CSC 425 - Principles of Compiler Design |

Abstract Syntax Trees

Review of Parsing

m Given a language L(G), a parser consumes a sequence of
tokens s and produces a parse tree
m Issues:
m How do we recognize that s € L(G)?
A parse tree of s describes how s € L(G)
Ambiguity: more than one parse tree for some string s
Error: no parse tree for some string s
How do we construct the parse tree?

Abstract Syntax Trees

m So far, a parser traces the derivation of a sequence of tokens

m The rest of the compiler needs a structural representation of
the program

m Abstract syntax trees (ASTs) are like parse trees, but ignore
some details

Abstract Syntax Trees

Consider the grammar
E — int|(E)|E+ E

and the string
54+ (2+3)

After lexical analysis (a list of tokens)
int(5), plus, Iparen, int(2), plus, int(3)

During parsing, we build a parse tree ...

Example of Parse Tree

m Traces the operation of the parser
m Captures the nesting structure

m But has too much info, for example parentheses

Example of AST

m Also captures the nesting structure

m But abstracts from the concrete syntax making it more
compact and easier to use

m An important data structure in a compiler

+
/ N\
+
/ N\
id(2) id(3)

id(5)

Semantic Actions

m Each grammar symbol may have attributes

m An attribute is a property of a programming language construct
m For terminal symbols attributes can be calculated by the lexer

m Each production may have an action
m Written as: X — Y;... Ya{action}
m That can refer to or compute symbol attributes

m This is what we will use to construct ASTs

Semantic Actions: Example

m Consider the grammar
E — int|(E)|E+ E

m For each symbol X define an attribute X.val

m For terminals, val is the associated lexeme
m For non-terminals, val is the expression’s value

m We annotate the grammar with actions:

E — int {E.val = int.val}
| (E1) {E.val = E;.val}
‘ E+ E {E.val:El.va/+E2.va/}

Semantic Actions: Example Continued

m String: 5+ (24 3)
m Tokens: int(5), plus, Iparen, int(2), plus, int(3)

Productions
E—E+E
Ei — Int(5)
E2 — (E3)
Es - E4 + Es
Es — /nt(2)
Es — mt(3)

Equations

E.val = Ei.val + E>.val
Ej.val = int(5).val =5

E2.va/ = E3.val

Es.val = E4.val 4+ Es.val
Ey.val = int(2).val =2

Es.val = int(3).val =3

Semantic Actions: Dependencies

m Semantic actions specify a system of equations, but the order
of executing the actions is not specified

m Example:
Esz.val = E4.val + Es.val

m Must compute E4.val and Es.val before E3.val
m We say that E3.val depends on Ej.val and Es.val

m The parser must find the order of evaluation

Evaluating Attributes

m An attribute must be computed after all its successors in the
dependency graph have been computed

m Such an order exists when there are no cycles

m In the previous example, attributes can be computed
bottom-up

Types of Attributes

m Synthesized attributes
m Calculated from attributes of descendants in the parse tree
m E.val is a synthesized attribute
m Can always be calculated in a bottom-up order
m Grammars with only synthesized attributes are called
S-attributed grammars
m Inherited attributes

m Calculated from attributes of the parent node(s) and/or
siblings in the parse tree

Example: Line Calculator

m Each line contains an expression
E—int| E4+E

m Each line is terminated with the = sign
L—-E=|+E=

m In the second form, the value of evaluating the previous line is
used as a starting value

m A program is a sequence of lines

P—e|PL

Attributes for the Line Calculator

m Each E has a synthesized attribute val
m Each L has a synthesized attribute val

L—E= {L.val = E.val}
| + E = {L.val = E.val + L.prev}

m We need the value of the previous line

m We use an inherited attribute L.prev

Attributes for the Line Calculator

m Each P has a synthesized attribute val

P—e {P.val =0}
| P1L {P.val = L.val,
L.prev = P;.val}

m Each L has an inherited attribute prev
m L.prev is inherited from sibling P;.val

Semantic Actions: Notes

m Semantic actions can be used to build ASTs

m And many other things, such as, type checking and code
generation

m This process is called syntax-directed translation — a
substantial generalization over context-free grammars

Constructing an AST

m We first define the AST data type

m Consider an abstract tree type with two constructors:

m mkleaf(n)
m mkplus(left_tree, right_tree)

Constructing a Parse Tree

m We define a synthesized attribute ast
m Values of ast values are ASTs

m We assume that int.lexval is the value of the integer lexeme
m Computed using semantic actions

E — int {E.ast = makeleaf (int.val)}
| (E1) {E.ast = Ej.ast}
| 1+ E> {E.ast = mkplus(E;.ast, Ey.ast)}

Parse Tree Example

m Consider the string: 5+ (2 + 3)
m A bottom-up evaluation of the ast attribute:

E.ast = mkplus(mkleaf (5)
mkplus(mkleaf (2), mkleaf (3)))

plus

/ N\

5 plus

/N
2 3

Review of Abstract Syntax Trees

m We can specify language syntax using a context-free grammar
m A parser will answer whether s € L(G)

m ... and will build a parse tree

m ... which we convert to an AST

m ... and pass on to the rest of the compiler

