Bits, Bytes and Integers

CSC 235 - Computer Organization

References

■ Slides adapted from CMU

Outline

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
- Computers determine what to do (instructions)
- ... and represent and manipulate numbers, sets, strings, etc.
- Why bits? Electronic implementation
- Easy to store with bitstable elements
- Reliably transmitted on noisy and inaccurate wires

Example: Counting in Binary

- Base 2 number representation
- Represent 15213_{10} as 11101101101101_{2}
- Represent 1.20_{10} as $1.0011001100110011[0011] \ldots 2$
- Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$

Encoding Byte Values

- Byte $=8$ bits
- Binary: 00000000_{2} to 11111111_{2}
- Decimal: 0_{10} to 255_{10}
- Hexadecimal: 00_{16} to $F F_{16}$
- Base 16 number representation
- Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '
- Typically written in most programming languages with the prefix 0 x

Encoding Byte Values

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Encoding Byte Values

Hex	Decimal	Binary
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Example Data Representations

C Data	Typical 32-bit	Typical-64	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Boolean Algebra

- Algebraic representation of logic
- Encode "true" as 1 and "false" as 0
- Developed by George Boole in the 19th Century
- Operations
- and (\&): $\mathrm{a} \& \mathrm{~b}=1$ when both $\mathrm{a}=1$ and $\mathrm{b}=1$
- or (1): $\mathrm{a} \mid \mathrm{b}=1$ when either $\mathrm{a}=1$ and $\mathrm{b}=1$
- not (\sim): ~a $=1$ when $\mathrm{a}=0$
- $\operatorname{xor}\left({ }^{\wedge}\right): \mathrm{a}{ }^{\wedge} \mathrm{b}=1$ when either $\mathrm{a}=1$ or $\mathrm{b}=1$, but not both

General Boolean Algebras

- Operate on Bit Vectors
- operations applied bitwise
- Example:

01101001
$\& 01010101$
01000001

- All of the properties of Boolean algebra apply

Example: Representing and Manipulating Sets

- Representation
- Width w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $a_{j}=1$ if $j \in A$
- Operations
- \&: intersection
- I: union
- `: symmetric difference
- ~: complement

Example: Representing and Manipulating Sets

- Examples with $w=8$
- $x=01101001=\{0,3,5,6\}$
- $y=01010101=\{0,2,4,6\}$
- $x \& y=01000001=\{0,6\}$
- $x \mid y=01111101=\{0,2,3,4,5,6\}$

Bit-Level Operations in C

■ The operations \& $, 1, \sim$, and ^ are available in C

- apply to any "integral" data type: long, int, short, char, unsigned
- arguments are viewed as bit vectors
- arguments are applied bitwise
- Examples with char type
- ~0x41 $\rightarrow 0 \mathrm{xBE}$
- ~0x00 $\rightarrow 0 \mathrm{xFF}$
- $0 x 69$ \& $0 x 55 \rightarrow 0 x 41$

Contrast: Logical Operations in C

- The logical operations in C are \&\&, ||, and !

■ zero is viewed as "false"
■ any non-zero value is viewed as "true"
■ always return 0 or 1

- short-circuit evaluation
- Examples with char data type
- ! 0x41 $\rightarrow 0 \times 00$
-! $0 x 00 \rightarrow 0 x 01$
- $0 x 42$ \&\& $0 x 55 \rightarrow 0 x 01$

Shift Operations

- Left shift: x << y
- shift bit vector x left y positions
- fill with zeros on the right
- Right shift: x >> y
- shift bit vector x right y positions
- logical shift: fill with zeros on the left
- arithmetic shift: replicate most significant bit on the left
- Undefined behavior: shift amount less than zero or greater than bit vector length

Shift Examples

■ $\mathrm{x}=01100010$

- x << $3=00010000$
- logical: x >> $2=00011000$
- arithmetic: x >> $2=00011000$

■ $\mathrm{x}=10100010$
■ x << $3=00010000$

- logical: x >> 2 = 00101000
- arithmetic: x >> 2 = 11101000

Encoding Integers

- Unsigned

$$
B 2 U(x)=\sum_{i=0}^{w-1} x_{i} \cdot 2^{i}
$$

where x is the bit vector and w is the length of the bit vector

- Signed: two's complement

$$
B 2 T(x)=-x_{w-1} \cdot 2^{w-1} \sum_{i=0}^{w-2} x_{i} \cdot 2^{i}
$$

where x is the bit vector, w is the length of the bit vector, and $-x_{x-1}$ is the sign bit

Example 3 Bit Integer Encodings

value	unsigned	two's complement
000	$(0+0+0)=0$	$(0+0+0)=0$
001	$(0+0+1)=1$	$(0+0+1)=1$
010	$(0+2+0)=2$	$(0+2+0)=2$
011	$(0+2+1)=3$	$(0+2+1)=3$
100	$(4+0+0)=4$	$(-4+0+0)=-4$
101	$(4+0+1)=5$	$(-4+0+1)=-3$
110	$(4+2+0)=6$	$(-4+2+0)=-2$
111	$(4+2+1)=7$	$(-4+2+1)=-1$

Numeric Ranges

- Unsigned values
- min $=0$
- $\max =2^{w}-1$
- Two's complement values
- $\min =-2^{w-1}$
- $\max =2^{w-1}-1$

Example Numeric Ranges

- Values where $w=16$

	decimal	hex	binary
unsigned max	65535	FF FF	1111111111111111
signed max	32767	$7 F$ FF	0111111111111111
signed min	-32768	80 00	1000000000000000
-1	-1	FF FF	1111111111111111
0	0	0000	0000000000000000

Unsigned and Signed Numeric Values

- Equivalence
- Same encodings for non-negative values
- Uniqueness
- Every bit pattern represents a unique integer value
- Each representable integer has a unique bit encoding
- Can invert mappings
- unsigned bit pattern $=U 2 B(x)=B 2 U^{-1}(x)$
- two's complement bit pattern $=T 2 B(x)=B 2 T^{-1}(x)$

Mapping Between Signed and Unsigned

■ Mappings between unsigned and two's complement numbers: keep the bit representation and reinterpret.

- Two's complement to unsigned: $T 2 B \circ B 2 U$

■ Unsigned to two's complement: $U 2 B \circ B 2 T$

Signed to Unsigned

Unsigned to Signed

Signed vs. Unsigned in C

- Constants
- By default are considered to be signed integers

■ Unsigned if the suffix is " U ", for example 42 U

- Casting
- Explicit casting between signed and unsigned same as $U 2 T$ and T2U
- Implicit casting also occurs via assignments and procedure calls

Casting Surprises

- Expression evaluation
- If there is a mix of unsigned and signed integers in a single expression, then signed values are implicilty cast to unsigned values.
- Including comparison operations: <, >, ==, <=, >=
- Examples

Operand 1	Operand 2	Relation	Evaluation
0	0 U	$==$	unsigned
-1	0	$<$	signed
-1	0 U	$>$	unsigned
-1	-2	$>$	signed

Unsigned vs. Signed in C

- Easy to make mistakes
- Example 1
unsigned i;

$$
\begin{aligned}
\text { for } & (i=c n t-2 ; i \\
& \text { a[i] }+=a[i+1]
\end{aligned}
$$

- Example 2
\#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i -= DELTA)

Summary: Casting Rules

- Bit pattern is maintained, but reinterpreted
- Can have unexpected effects: adding or subtracting 2^{w}
- An expression containing signed and unsigned ints implicitly casts the signed ints to unsigned ints

Sign Extension

- Task
- Given w-bit signed integer x
- Convert it to $w+k$ bit integer x^{\prime} with the same value
- Rule
- Make k copies of the sign bit:
- $x^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$
- C automatically performs sign extension

Sign Extension Example

- Example of sign extensions from $w=3$ to $w=4$

Truncation

■ Task:

- Given $k+w$-bit signed or unsigned integer x
- Convert it to w-bit integer x^{\prime} with the same value for "small enough" x
- Rule:
- Drop top k bits:
- $x^{\prime}=x_{w-1}, x_{w-2}, \ldots, x_{0}$

Summary: Expanding and Truncating Rules

■ Expanding (e.g. short to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result
- Truncating (e.g. int to short)
- Unsigned/signed: bits are truncated
- Result is reinterpreted
- Unsigned: modulus operation
- Signed: similar to modulus
- For small (in magnitude) numbers yields expected behavior

Unsigned Addition

- $\operatorname{UAdd}_{w}(u, v)$
- Operands: w bits
- True sum: $w+1$ bits
- Discard carry: w bits
- Standard addition function ignores carry output
- Implements modular arithmetic

$$
s=\operatorname{UAdd}_{w}(u, v)=u+v \bmod 2^{w}
$$

UAdd Overflow

- Implements modular arithmetic

$$
s=\operatorname{UAdd}_{w}(u, v)=u+v \bmod 2^{w}
$$

$$
x+y
$$

$$
2^{w+1} \mathbf{T}^{\text {Overflow }}
$$

2^{w}

$$
x+{ }^{\mathrm{u}} y
$$

Visualizing Mathematical Integer Addition

- $\operatorname{Add}_{4}(u, v)$

Visualizing Unsigned Integer Addition

- $\operatorname{UAdd}_{4}(u, v)$

Two's Complement Addition

- $\operatorname{TAdd}_{w}(u, v)$
- Operands: w bits
- True sum: $w+1$ bits
- Discard carry: w bits
- TAdd and Uadd have identical bit level behavior

TAdd Overflow

- True add requires $w+1$ bits; drop off the most significant bit and interpret as 2 's complement integer

Visualizing Two's Complement Addition

- $\operatorname{TAdd}_{4}(u, v)$

Integer Multiplication

- Problem: the exact product of w-bit numbers u, v might have a result that exceeds w bits.
- Unsigned: up to $2 w$ bits
- Two's complement min (negative): up to $2 w-1$ bits
- Two's complement max (positive): up to $2 w$ bits
- Maintaining exact results
- would need to keep expanding word size with each product computed
- is done in software if needed

Unsigned Multiplication in C

- $\operatorname{UMuI}_{w}(u, v)$
- Operands: w bits
- True product: $2 w$ bits
- Discard w bits: w bits
- Implements modular arithmetic

$$
s=U M u I_{w}(u, v)=u+v \bmod 2^{w}
$$

Signed Multiplication in C

- $\operatorname{TMuI}_{w}(u, v)$
- Operands: w bits
- True product: $2 w$ bits
- Discard w bits: w bits
- Ignores high order w bits, some of which are different for signed vs. unsigned multiplication

Power-of-2 Multiply with Shift

- Operation $u \ll k$
- Gives $u \cdot 2^{k}$ for both signed and unsigned
- Operands: w bits
- True product $w+k$ bits
- Discard k bits: w bits

Unsigned Power-of-2 Divide with Shift

- Operation u >> k
- Gives

$$
\left\lfloor\frac{u}{2^{k}}\right\rfloor
$$

- Uses logical shift

Signed Power-of-2 Divide with Shift

- Operation u >> k
- Gives

$$
\left\lfloor\frac{u}{2^{k}}\right\rfloor
$$

■ Uses arithmetic shift

- Rounds wrong direction when $u<0$

Correct Signed Power-of-2 Divide with Shift

- Quotient of negative number power of 2
- Want

$$
\left\lceil\frac{u}{2^{k}}\right\rceil
$$

- Compute as

$$
\left\lfloor\frac{u+2^{k}-1}{2^{k}}\right\rfloor
$$

- In $\mathrm{C}:(\mathrm{u}+(1 \ll \mathrm{k})-1) \gg \mathrm{k}$
- Biases dividend toward 0

Negation: Complement and Increment

■ Negate through complement and increment

$$
\sim x+1=-x
$$

■ Examples

Value	x	$\sim \mathrm{x}$	$\sim \mathrm{x}+1$	Result
15213	3B6D	C492	C493	-15213
0	0000	FFFF	0000	0
TMin	8000	7FFF	8000	TMin

Arithmetic: Basic Rules

- Addition
- Unsigned/signed: normal addition followed by truncate
- Unsigned: addition mod 2^{w}
- Signed: modified addition mod 2^{w} (result in proper range)
- Multiplication
- Unsigned/signed: normal multiplication followed by truncate
- Unsigned: multiplication mod 2^{w}

■ Signed: modified multiplication mod 2^{w} (result in proper range)

Byte-Oriented Memory Organization

- Programs refer to data by address
- Conceptually envision it as a very large array of bytes
- An address is like an index into that array, and a pointer variable stores an address
- Note: system provides private address space to each "process"
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "word size"
- Nominal size of integer-valued data
- Until recently, most machines used 32 bits (4 bytes) as a word size
- Increasingly, machines have 64 bit word size
- Machines still support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes

Word-Oriented Memory Organization

- Addresses specify byte locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32 bit) or 8 (64 bit)

Byte Ordering

- How are the bytes within a multi-byte word ordered in memory?
- Conventions
- Big endian: least significant byte has highest address
- Little endian: least significant byte has lowest address

■ Example: 4-byte value of 0×1234567

- Big endian: 01234567

■ Little endian: 67452301

Examining Data Representations

- Code to print byte representation of data

```
typedef unsigned char *pointer;
void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++) {
        printf("%p\t0x%.2x\n", start+i, start[i]);
    }
    printf("\n");
}
```


Representing Strings

- Strings in C
- Represented by an array of characters
- Each character is encoded in ASCII format
- Strings should be null terminated (final character $=0$)
- Compatibility
- Byte ordering is not an issue

Reading Byte-Reversed Listings

- Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code
- Example Fragment

| Address | Instruction code | Assembly Rendition | |
| :--- | :--- | :--- | :--- | :--- |
| 8048365: | 5 b | pop | |
| 8048366: | $81 \mathrm{c3}$ ab 120000 | add | $\$ 0 \times 12 \mathrm{ab}, \% \mathrm{ebx}$ |
| 804836c: | 83 bb 2800000000 | cmpl | $\$ 0 \mathrm{x} 0,0 \mathrm{x} 28(\% \mathrm{ebx})$ |

Summary

- Representing information as bits

■ Bit-level manipulations

- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

