
Bits, Bytes and Integers
CSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Outline

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed

Conversion, casting

Expanding, truncating

Addition, negation, multiplication, shifting

Summary

Representations in memory, pointers, strings

Everything is bits

Each bit is 0 or 1

By encoding/interpreting sets of bits in various ways
Computers determine what to do (instructions)

. . . and represent and manipulate numbers, sets, strings, etc.

Why bits? Electronic implementation
Easy to store with bitstable elements

Reliably transmitted on noisy and inaccurate wires

Example: Counting in Binary

Base 2 number representation
Represent 1521310 as 111011011011012

Represent 1.2010 as 1.0011001100110011[0011] . . .2

Represent 1.5213× 104 as 1.11011011011012 × 213

Encoding Byte Values

Byte = 8 bits
Binary: 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal: 0016 to FF16

Base 16 number representation

Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

Typically written in most programming languages with the
prefix 0x

Encoding Byte Values

Hex Decimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111

Encoding Byte Values

Hex Decimal Binary

8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Example Data Representations

C Data Typical 32-bit Typical-64 x86-64

char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Boolean Algebra

Algebraic representation of logic
Encode “true” as 1 and “false” as 0

Developed by George Boole in the 19th Century

Operations
and (&): a & b = 1 when both a = 1 and b = 1

or (|): a | b = 1 when either a = 1 and b = 1

not (~): ~a = 1 when a = 0

xor (ˆ): a ˆ b = 1 when either a = 1 or b = 1, but not both

General Boolean Algebras

Operate on Bit Vectors
operations applied bitwise

Example:

01101001
& 01010101
01000001

All of the properties of Boolean algebra apply

Example: Representing and Manipulating
Sets

Representation
Width w bit vector represents subsets of {0, . . . , w − 1}

aj = 1 if j ∈ A

Operations
&: intersection

|: union

ˆ: symmetric difference

~: complement

Example: Representing and Manipulating
Sets

Examples with w = 8
x = 01101001 = {0, 3, 5, 6}

y = 01010101 = {0, 2, 4, 6}

x & y = 01000001 = {0, 6}

x | y = 01111101 = {0, 2, 3, 4, 5, 6}

Bit-Level Operations in C

The operations &, |, ~, and ˆ are available in C
apply to any “integral” data type: long, int, short, char,
unsigned

arguments are viewed as bit vectors

arguments are applied bitwise

Examples with char type
~0x41 → 0xBE

~0x00 → 0xFF

0x69 & 0x55 → 0x41

Contrast: Logical Operations in C

The logical operations in C are &&, ||, and !

zero is viewed as “false”

any non-zero value is viewed as “true”

always return 0 or 1

short-circuit evaluation

Examples with char data type
!0x41 → 0x00

!0x00 → 0x01

0x42 && 0x55 → 0x01

Shift Operations

Left shift: x << y

shift bit vector x left y positions

fill with zeros on the right

Right shift: x >> y

shift bit vector x right y positions

logical shift: fill with zeros on the left

arithmetic shift: replicate most significant bit on the left

Undefined behavior: shift amount less than zero or greater than
bit vector length

Shift Examples

x = 01100010

x << 3 = 00010000

logical: x >> 2 = 00011000

arithmetic: x >> 2 = 00011000

x = 10100010

x << 3 = 00010000

logical: x >> 2 = 00101000

arithmetic: x >> 2 = 11101000

Encoding Integers

Unsigned

B2U(x) =
w−1∑
i=0

xi · 2i

where x is the bit vector and w is the length of the bit vector

Signed: two’s complement

B2T (x) = −xw−1 · 2w−1
w−2∑
i=0

xi · 2i

where x is the bit vector, w is the length of the bit vector, and
−xx−1 is the sign bit

Example 3 Bit Integer Encodings

value unsigned two’s complement

000 (0+0+0) = 0 (0+0+0) = 0
001 (0+0+1) = 1 (0+0+1) = 1
010 (0+2+0) = 2 (0+2+0) = 2
011 (0+2+1) = 3 (0+2+1) = 3
100 (4+0+0) = 4 (-4+0+0) = -4
101 (4+0+1) = 5 (-4+0+1) = -3
110 (4+2+0) = 6 (-4+2+0) = -2
111 (4+2+1) = 7 (-4+2+1) = -1

Numeric Ranges

Unsigned values
min = 0

max = 2w − 1

Two’s complement values
min = −2w−1

max = 2w−1 − 1

Example Numeric Ranges

Values where w = 16

decimal hex binary

unsigned max 65535 FF FF 11111111 11111111
signed max 32767 7F FF 01111111 11111111
signed min -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Unsigned and Signed Numeric Values

Equivalence
Same encodings for non-negative values

Uniqueness
Every bit pattern represents a unique integer value

Each representable integer has a unique bit encoding

Can invert mappings
unsigned bit pattern = U2B(x) = B2U−1(x)

two’s complement bit pattern = T2B(x) = B2T−1(x)

Mapping Between Signed and Unsigned

Mappings between unsigned and two’s complement numbers:
keep the bit representation and reinterpret.

Two’s complement to unsigned: T2B ◦ B2U

Unsigned to two’s complement: U2B ◦ B2T

Signed to Unsigned

Unsigned to Signed

Signed vs. Unsigned in C

Constants
By default are considered to be signed integers

Unsigned if the suffix is “U”, for example 42U

Casting
Explicit casting between signed and unsigned same as U2T and
T2U

Implicit casting also occurs via assignments and procedure calls

Casting Surprises
Expression evaluation

If there is a mix of unsigned and signed integers in a single
expression, then signed values are implicilty cast to unsigned
values.

Including comparison operations: <, >, ==, <=, >=

Examples

Operand 1 Operand 2 Relation Evaluation

0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
-1 -2 > signed

Unsigned vs. Signed in C

Easy to make mistakes

Example 1

unsigned i;
for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1]

Example 2

#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i -= DELTA)

...

Summary: Casting Rules

Bit pattern is maintained, but reinterpreted

Can have unexpected effects: adding or subtracting 2w

An expression containing signed and unsigned ints implicitly
casts the signed ints to unsigned ints

Sign Extension

Task
Given w -bit signed integer x

Convert it to w + k bit integer x ′ with the same value

Rule
Make k copies of the sign bit:

x ′ = xw−1, . . . , xw−1, xw−1, xw−2, . . . , x0

C automatically performs sign extension

Sign Extension Example
Example of sign extensions from w = 3 to w = 4

Truncation

Task:
Given k + w -bit signed or unsigned integer x

Convert it to w -bit integer x ′ with the same value for “small
enough” x

Rule:
Drop top k bits:

x ′ = xw−1, xw−2, . . . , x0

Summary: Expanding and Truncating
Rules

Expanding (e.g. short to int)
Unsigned: zeros added

Signed: sign extension

Both yield expected result

Truncating (e.g. int to short)
Unsigned/signed: bits are truncated

Result is reinterpreted

Unsigned: modulus operation

Signed: similar to modulus

For small (in magnitude) numbers yields expected behavior

Unsigned Addition

UAddw (u, v)
Operands: w bits

True sum: w + 1 bits

Discard carry: w bits

Standard addition function ignores carry output

Implements modular arithmetic

s = UAddw (u, v) = u + v mod 2w

UAdd Overflow
Implements modular arithmetic
s = UAddw (u, v) = u + v mod 2w

Visualizing Mathematical Integer Addition
Add4(u, v)

Visualizing Unsigned Integer Addition

UAdd4(u, v)

Two’s Complement Addition

TAddw (u, v)
Operands: w bits

True sum: w + 1 bits

Discard carry: w bits

TAdd and Uadd have identical bit level behavior

TAdd Overflow
True add requires w + 1 bits; drop off the most significant bit
and interpret as 2’s complement integer

Visualizing Two’s Complement Addition

TAdd4(u, v)

Integer Multiplication

Problem: the exact product of w -bit numbers u, v might have
a result that exceeds w bits.

Unsigned: up to 2w bits

Two’s complement min (negative): up to 2w − 1 bits

Two’s complement max (positive): up to 2w bits

Maintaining exact results
would need to keep expanding word size with each product
computed

is done in software if needed

Unsigned Multiplication in C

UMulw (u, v)
Operands: w bits

True product: 2w bits

Discard w bits: w bits

Implements modular arithmetic

s = UMulw (u, v) = u + v mod 2w

Signed Multiplication in C

TMulw (u, v)
Operands: w bits

True product: 2w bits

Discard w bits: w bits

Ignores high order w bits, some of which are different for
signed vs. unsigned multiplication

Power-of-2 Multiply with Shift

Operation u << k

Gives u · 2k for both signed and unsigned

Operands: w bits

True product w + k bits

Discard k bits: w bits

Unsigned Power-of-2 Divide with Shift

Operation u >> k

Gives

⌊
u
2k

⌋
Uses logical shift

Signed Power-of-2 Divide with Shift

Operation u >> k

Gives

⌊
u
2k

⌋
Uses arithmetic shift

Rounds wrong direction when u < 0

Correct Signed Power-of-2 Divide with
Shift

Quotient of negative number power of 2
Want

⌈
u
2k

⌉
Compute as

⌊
u + 2k − 1

2k

⌋
In C: (u + (1<<k) - 1) >> k

Biases dividend toward 0

Negation: Complement and Increment

Negate through complement and increment

~x + 1 = -x

Examples

Value x ~x ~x+1 Result

15213 3B6D C492 C493 -15213
0 0000 FFFF 0000 0

TMin 8000 7FFF 8000 TMin

Arithmetic: Basic Rules

Addition
Unsigned/signed: normal addition followed by truncate

Unsigned: addition mod 2w

Signed: modified addition mod 2w (result in proper range)

Multiplication
Unsigned/signed: normal multiplication followed by truncate

Unsigned: multiplication mod 2w

Signed: modified multiplication mod 2w (result in proper range)

Byte-Oriented Memory Organization

Programs refer to data by address
Conceptually envision it as a very large array of bytes

An address is like an index into that array, and a pointer
variable stores an address

Note: system provides private address space to each “process”
Think of a process as a program being executed

So, a program can clobber its own data, but not that of others

Machine Words

Any given computer has a “word size”
Nominal size of integer-valued data

Until recently, most machines used 32 bits (4 bytes) as a word
size

Increasingly, machines have 64 bit word size

Machines still support multiple data formats
Fractions or multiples of word size

Always integral number of bytes

Word-Oriented Memory Organization

Addresses specify byte locations
Address of first byte in word

Addresses of successive words differ by 4 (32 bit) or 8 (64 bit)

Byte Ordering

How are the bytes within a multi-byte word ordered in memory?

Conventions
Big endian: least significant byte has highest address

Little endian: least significant byte has lowest address

Example: 4-byte value of 0x1234567
Big endian: 01 23 45 67

Little endian: 67 45 23 01

Examining Data Representations

Code to print byte representation of data

typedef unsigned char *pointer;
void show_bytes(pointer start, size_t len) {
size_t i;
for (i = 0; i < len; i++) {

printf("%p\t0x%.2x\n", start+i, start[i]);
}
printf("\n");

}

Representing Strings

Strings in C
Represented by an array of characters

Each character is encoded in ASCII format

Strings should be null terminated (final character = 0)

Compatibility
Byte ordering is not an issue

Reading Byte-Reversed Listings

Disassembly
Text representation of binary machine code

Generated by program that reads the machine code

Example Fragment

Address Instruction code Assembly Rendition
8048365: 5b pop
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Summary

Representing information as bits

Bit-level manipulations

Integers
Representation: unsigned and signed

Conversion, casting

Expanding, truncating

Addition, negation, multiplication, shifting

Summary

Representations in memory, pointers, strings

