
Dynamic Memory Allocation:
Advanced Concepts

CSC 235 - Computer Organization

References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html

Review: Dynamic Memory Allocation

Programmers use dynamic memory allocators (such as malloc)
to acquire virtual memory (VM) at run time.

For data structures where the size is only known at runtime
Dynamic memory allocators manage an area of process VM
known as the heap.

Review: Keeping Track of Free Blocks

Method 1: Implicit list using length; links all blocks
Need to tag each block as allocated/free

Method 2: Explicit list among the free blocks using pointers
Need space for pointers

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree with pointers within each free block,
and the length used as a key

Review: Implicit Lists Summary

Implementation: very simple

Allocate cost: linear time worst case

Free cost: constant time worst case (even with coalescing)

Memory overhead: depends on placement policy

Not used in practice for malloc/free because of linear time
allocation

The concepts of splitting and boundary tag coalescing are
general to all allocators

Explicit Free Lists

Maintain list(s) of free blocks, not all blocks
We track only free blocks, so we can use payload area
The “next” free block could be anywhere

We need to store forward/backward pointers, not just sizes
Still need boundary tags for coalescing

To find adjacent blocks according to memory order

Freeing With Explicit Free Lists
Insertion policy: where in the free list do you put a newly freed
block?

Unordered
LIFO (last-in-first-out) policy

Insert freed block at the beginning of the free list
FIFO (first-in-first-out) policy

Insert freed block at the end of the free list
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address
ordered

Address-ordered policy
Insert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)

Con: requires search

Pro: studies suggest fragmentation is lower than LIFO/FIFO

Freeing with a LIFO Policy

Case 1: allocated ↔ target ↔ allocated
Insert the freed block at the root of the list

Case 2: allocated ↔ target ↔ free
Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

Case 3: free ↔ target ↔ allocated
Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

Case 4: free ↔ target ↔ free
Splice out adjacent successor block, coalesce all three memory
blocks, and insert the new block at the root of the list

An Implementation Trick

Use circular, doubly linked list

Support multiple approaches with single data structure

First-fit versus next-fit
Either keep free pointer fixed or move as search list

LIFO versus FIFO
Insert as next block (LIFO) or previous block (FIFO)

Explicit List Summary

Comparison to implicit list:
Allocate is linear time in number of free blocks instead of all
blocks (much faster)
Slightly more complicated allocate and free because we need to
splice blocks in and out of the list
Some extra space for the links (two extra words needed for each
block)

Does this increase internal fragmentation?

Segregated List (Seglist) Allocators

Each size class of blocks has its own free list
Example size classes: 16, 32-48, 64-inf

Often have separate classes for each small size

For larger sized: one class for each size [2i + 1, 2i+1]

Seglist Allocator

Given an array of free lists, each one for some size class

To allocate a block of size n:
Search appropriate free list for block of size m > n (that is, first
fit)
If an appropriate block is found:

Split block and place fragment on appropriate list
If no block is found, try next larger class

Repeat until block is found

If no block is found:
Request additional heap memory from OS (using sbrk())
Allocate block of n byte from this new memory
Place remainder as single free block in appropriate size class

Seglist Allocator (Continued)

To free a block:
Coalesce and place on appropriate list

Advantages of seglist allocators versus non-seglist allocators
(both with first fit)

Higher throughput
log time for power-of-two size classes versus linear time

Better memory utilization
First fit search of segregated free list approximates a best fit
search of the entire heap
Extreme case: giving each block its own size class is equivalent
to best fit

Memory Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks

Dereferencing Bad Pointers

The classic scanf bug

int val;

...

scanf("%d", val);

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int)); // <-- here
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

Can avoid by using calloc

Overwriting Memory

Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Can you spot the bug?

Overwriting Memory

Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) { // <-- here
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Overwriting Memory

Not checking the max string size

char s[8]; // <-- too small
int i;

gets(s); /* reads “123456789” from stdin */

Basis for classic buffer overflow attacks

Overwriting Memory

Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int); // <-- here

return p;
}

Overwriting Memory

Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--; // <-- here
Heapify(binheap, *size, 0);
return(packet);

}

What gets decremented?
Hint: precedence and associativity

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;
}

Freeing Blocks Multiple Times

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

Referencing Freed Blocks

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Failing to Free Blocks (Memory Leaks)

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

Failing to Free Blocks (Memory Leaks)
Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...

free(head);
return;

}

Dealing With Memory Bugs

Debugger: gdb
Good for finding bad pointer dereferences
Hard to detect the other memory bugs

Data structure consistency checker
Runs silently, prints message only on error
Use as a probe to zero in on error

Binary translator: valgrind
Powerful debugging and analysis technique
Rewrites text section of executable object file
Checks each individual reference at runtime

Bad pointers, overwrites, refs outside of allocated block
glibc malloc contains checking code

Implicit Memory Management: Garbage
Collection

Garbage collection: automatic reclamation of heap-allocated
storage; application never has to explicitly free memory

Common in many dynamic languages

Variants (“conservative” garbage collectors) exist for C and
C++

Garbage Collection

How does the memory manager know when memory can be
freed?

In general we cannot know what is going to be used in the
future since it depends on conditionals
But, we can tell that certain blocks cannot be used if there are
no pointers to them

Must make certain assumptions about pointers
Memory manager can distinguish pointers from non-pointers
All pointers point to the start of a block
Cannot hide pointers (for example, coercing them to an int
and then back again)

Classical Garbage Collection Algorithms

Mark-and-sweep collection (McCarthy, 1960)
Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
Does not move blocks (not discussed)

Copying collection (Minsky, 1963)
Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
Collection based on lifetimes

Most allocations become garbage very soon
So, focus reclamation work on zones of memory recently
allocated

Memory as a Graph

We view memory as a directed graph
Each block is a node in the graph
Each pointer is an edge in the graph
Locations not in the heap that contain pointers into the heap
are called root nodes (for example, registers, locations on the
stack, global variables)

Memory as a Graph

A node (block) is reachable if there is a path from any root to
that node
Non-reachable nodes are garbage (cannot be needed by the
application)

Mark and Sweep Collecting

Can build on top of malloc/free package
Allocate using malloc until you “run out of space”

When out of space:
Use extra mark bit in the head of each block
Mark: start at roots and set mark bit on each reachable block
Sweep: scan all blocks and free blocks that are not marked

Assumptions for a Simple Implementation

Application
new(n): returns pointer to new block with all locations cleared
read(b, i): read location i of block b into register
write(b, i, v): write v into location i of block b

Each block will have a header word
addressed as b[-1], for block b
used for different purposes in different collectors

Instructions used by the Garbage Collector
is_ptr(p): determines whether p is a pointer
length(b): returns the length of block b, not including the
header
get_roots(): returns all the roots

Mark and Sweep Pseudocode

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark and Sweep Pseudocode

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) { // for entire heap

if markBitSet(p) // did we reach this block?
clearMarkBit(); // yes -> so just clear mark bit

else if (allocateBitSet(p)) // never reached: is it allocated?
free(p); // yes -> its garbage, free it

p += length(p+1); // goto next block
}

Conservative Mark and Sweep in C

A “conservative garbage collector” for C programs
is_ptr() determines if a word is a pointer by checking if it
points to an allocated block of memory
But, in C pointers can point to the middle of a block

To mark header, need to find the beginning of the block
Can use a balanced binary tree to keep track of all allocated
blocks (key is start-of-block)
Balanced tree pointers can be stored in header (use two
additional words)

