Floating Point

CSC 235 - Computer Organization

References

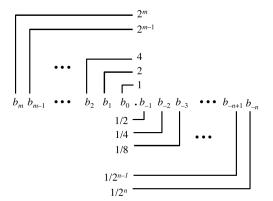
■ Slides adapted from CMU

Outline

- Background: fractional binary numbers
- IEEE floating point standard
- Example and properties
- Rounding, addition, and multiplication
- Floating point in C
- Summary

Fractional Binary Numbers

- Representation
 - Bits to the right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j}^{i} b_k \cdot 2^k$



Fractional Binary Number Examples

Value	Representation
23/4 23/8 23/16	101.11 = 4 + 1 + 1/2 + 1/4 $10.111 = 2 + 1/2 + 1/4 + 1/8$ $1.0111 = 1 + 1/4 + 1/8 + 1/16$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111...₂ are just below 1.0

Representable Numbers

- Limitation 1
 - Can only exactly represent numbers of the form $\frac{x}{2^k}$
 - Other rational numbers have repeating bit representations
 - Example
 - \blacksquare 1/3 = 0.01010101[01] ...₂
- Limitation 2
 - Just one setting of binary point within the w bits
 - limited range of numbers

IEEE Floating Point

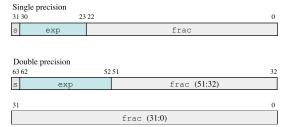
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Difficult to make fast in hardware

Floating Point Representation

- Numerical Form: $(-1)^s \cdot M \cdot 2^E$
 - sign bit s determines whether number is negative or positive
 - **significand** M normally a fractional value in range [1.0, 2.0)
 - **exponent** *E* weights value by power of two
- Encoding:
 - \blacksquare most significant bit is sign bit s
 - **exp** field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Precision options

- Single precision: 32 bits
 - exp field is 8 bits
 - frac field is 23 bits
- Double precision: 64 bits
 - exp field is 11 bits
 - frac field is 52 bits



Floating Point Numbers

- Three different "kinds" of floating point numbers based on the exp field:
 - normalized: exp bits are not all ones and not all zeros
 - denormalized: exp bits are all zero
 - special: exp bits are all one

Normalized Values

- Exponent coded as a *biased* value: E = exp bias
 - exp: unsigned value of exp field
 - bias = $2^{k-1} 1$, where k is number of exponent bits
- Significand coded with implied leading 1: $M = 1.xx...x_2$
 - xxx . . . x: bits of frac field
 - \blacksquare minimum when frac = 000...0 (M = 1.0)
 - lacktriangledown maximum when $frac = 111 \dots 1 \; (M = 2.0 \epsilon)$
 - get extra leading bit for "free"

Normalized Encoding Example

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$
- Significand
 - M = 1.1101101101101
 - \blacksquare frac = 11011011011010000000000
- Exponent
 - *E* = 13
 - *bias* = 127
 - $exp = 140 = 10001100_2$

Denormalized Values

- Exponent value: E = 1 bias (instead of exp bias)
- Significand coded with implied leading 0: $M = 0.xxx...x_2$
 - xxx . . . x: bits of frac
- Cases
 - \blacksquare $exp = 000 \dots 0, frac = 000 \dots 0$
 - represents zero value
 - Note distinct values: +0 and -0
 - \blacksquare $exp = 000...0, frac <math>\neq 000...0$
 - numbers closest to 0.0
 - equally spaced

Special Values

- Case: exp = 111...1, frac = 000...0
 - \blacksquare represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - examples: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - represents case when no numeric value can be determined
 - \blacksquare examples: sqrt(-1), $\infty = \infty$, $\infty \times 0$

C float Decoding Example 1

- float value = 0xC0A00000
- $E = exp bias = 129 127 = 2_{10}$
- \bullet s=1 negative number
- $M = 1.0100000000000000000000 = 1 + 1/4 = 1.25_{10}$
- $\mathbf{v} = (-1)^s \cdot M \cdot 2^E = (-1)^1 \cdot 1.25 \cdot 2^2 = -5_{10}$

C float Decoding Example 2

- float value = 0x001C0000
- \blacksquare $E = exp bias = 1 127 = -126_{10}$
- \bullet s = 0 positive number
- $v = (-1)^s \cdot M \cdot 2^E = (-1)^0 \cdot 7 \cdot 2^{-5} \cdot 2^{-126} = 7 \cdot 2^{-131}$

Tiny Floating Point Example

- 8-bit floating point representation
 - the sign bit is the most significant bit
 - \blacksquare the next four bits are the *exp*, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (s = 0)

	S	exp	frac	Е	value
	0	0000	000	-6	0
closest to zero	0	0000	001	-6	1/512
largest denorm	0	0000	111	-6	7/512
smallest norm	0	0001	000	-6	8/512
closest to 1 below	0	0110	111	-1	15/16
	0	0111	000	0	1
closest to 1 above	0	0111	001	0	9/8
largest norm	0	1110	111	7	240
	0	1111	000	-	inf

Special Properties of the IEEE Encoding

- Floating point zero same as integer zero
- Can (almost) use unsigned integer comparison
 - must first compare sign bits
 - \blacksquare must consider -0 = 0
 - NaNs are problematic
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

- $\blacksquare x +_f y = round(x + y)$
- $\blacksquare x \times_f y = round(x \times y)$
- Basic idea
 - first compute exact result
 - make it fit into the desired precision
 - possibly overflow if exponent is too large
 - possibly round to fit into *frac*

Rounding

■ Rounding modes (illustrate with rounding USD)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	-\$1
round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
round up (∞)	\$2	\$2	\$2	\$3	-\$1
nearest even	\$1	\$2	\$2	\$2	-\$2

■ Nearest even rounds to the nearest, but if half-way in-between then round to nearest even

Closer Look at Round-To-Even

- Default Rounding Mode
 - Difficult to get any other kind without dropping into assembly
 - All others are statistically biased
 - sum of set of positive numbers will consistently be over- or under- estimated
 - Applying to other decimal places / bit positions
 - when exactly halfway between two possible values, round so that least significant digit is even
 - Example round to the nearest hundredth: 7.8950000 = 7.90 (halfway round up)
 - Example round to the nearest hundredth: 7.8850000 = 7.88 (halfway round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "even" when least significant bit is 0
 - \blacksquare "half way" when bits to right of rounding position = $100..._2$
- Examples: round to the nearest 1/4 (2 bits right of binary point)

value	binary	rounded	action	rounded value
$ \begin{array}{r} 2\frac{3}{32} \\ 2\frac{3}{16} \\ 2\frac{7}{8} \\ 2\frac{5}{8} \end{array} $	10.00011	10.00	down	2
$2\frac{3}{16}$	10.00110	10.01	up	$2\frac{1}{4}$
$2\frac{7}{8}$	10.11100	11.00	up	3
$2\frac{5}{8}$	10.10100	10.10	down	$2\frac{1}{2}$

Rounding

- Terminology
 - guard bit: least significant bit of result
 - round bit: the first bit removed
 - sticky bit: OR of remaining bits
- Round up conditions
 - \blacksquare round = 1, sticky = 1 \rightarrow > 0.5
 - \blacksquare guard = 1, round = 1, sticky = 0 \rightarrow round to even

Rounding Example

■ Round to three bits after the binary point

fraction	GRS	Incr?	Rounded
1.0000000	000	N	1.000
1.1010000	100	Ν	1.101
1.0001000	010	N	1.000
1.0011000	110	Υ	1.010
1.0001010	011	Υ	1.001
1.1111100	111	Υ	10.000

Floating Point Multiplication

- $(-1)^{s1} \cdot M1 \cdot 2^{E1} \times (-1)^{s2} \cdot M2 \cdot 2^{E2}$
- Exact result: $(-1)^s \cdot M \cdot 2^E$
 - sign s: s1 ^ s2
 - significand $M: M1 \times M2$
 - \blacksquare exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round *M* to fit *frac* precision

Floating Point Addition

- $\blacksquare (-1)^{s1} \cdot M1 \cdot 2^{E1} + (-1)^{s2} \cdot M2 \cdot 2^{E2}$, Assume E1 > E2
- Exact result: $(-1)^s \cdot M \cdot 2^E$
 - sign s, significand M
 - result of signed align and add, that is align at binary point
 - exponent *E*: *E*1
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If M < 1, shift M left k positions, decrement E by k
 - If *E* out of range, overflow
 - Round *M* to fit *frac* precision

Properties of Floating Point Addition

- Compare to those of Abelian Group
 - Closed under addition, but may generate infinity or NaN
 - Commutative
 - Not associative
 - 0 is additive identity
 - Almost every element has an additive inverse, except for infinities and NaNs
- Monotonicity
 - $a \ge b \rightarrow a + c \ge b + c$ except for infinities and NaNs

Properties of Floating Point Multiplication

- Compare to Commutative Ring
 - Closed under multiplication, but may generate infinity or NaN
 - Commutative
 - Not associative: possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity
 - Multiplication does **not** distribute over addition
- Monotonicity
 - $a \ge b \land c \ge 0 \rightarrow a * c \ge b * c$ except for infinities and NaNs

Floating Point in C

- C guarantees two levels
 - float: single precision
 - double: double precision
- Conversions / Casting
 - Casting between int, float, and double changes bit representation
 - double/float to int
 - truncates fractional part (like rounding to zero)
 - not defined when out of range or NaN
 - int to double
 - \blacksquare exact conversion, as long as int has ≤ 53 bit word size
 - int to float
 - will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - as if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - violates associativity and distributivity
 - makes life difficult for compilers and serious numerical applications programmers