Logic Design

CSC 235 - Computer Organization

References

■ Slides adapted from CMU

Outline

- Introduction to binary logic gates
- Truth table construction
- Logic functions and their simplifications
- Laws of binary logic

Overview of Logic Design

■ Fundamental Hardware Requirements

- Communication (how to get values from one place to another)
- Computation
- Storage
- Bits
- Everything expressed in terms of values 0 and 1
- Communication: low or high voltage on wire
- Computation: compute with Boolean functions
- Storage: store bits of information

Digital Signals

■ Use voltage thresholds to extract discrete values from continuous signal.

- Simplest version: 1-bit signal
- Either high range (1) or low range (0)
- With guard range between them

■ Not strongly affected by noise or low quality circuit elements

- Can make circuits simple, small and fast

Semiconductors to Computers

- Increasing levels of complexity
- Transistors built from semiconductors
- Logic gates built from transistors
- Logic functions built from gates
- Flip-flops built from logic
- Counters and sequencers from flip-flops
- Microprocessors from sequencers
- Computers from microprocessors

Semiconductors to Computers

- Increasing levels of Abstraction
- Physics
- Transistors
- Gates (this lecture)
- Logic (this lecture)
- Microprogramming
- Assembler
- Programming languages
- Applications

Logic Gates

- Basic logic circuits with one or more inputs and one output are called gates
- Gates are used as the building blocks in the design of more complex digital logic circuits.

Representing Logic Functions

- There are several ways of representing logic functions:
- Symbols to represent the gates
- Truth tables
- Boolean algebra

NOT Gate

- Truth table

a	y
0	1
1	0

- Boolean algebra

$$
y=\bar{a}
$$

AND Gate

- Truth table

a	b	y
0	0	0
0	1	0
1	0	0
1	1	1

- Boolean algebra

$$
y=a \cdot b
$$

OR Gate

- Truth table

a	b	y
0	0	0
0	1	1
1	0	1
1	1	1

- Boolean algebra

$$
y=a+b
$$

XOR Gate

- Truth table

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

- Boolean algebra

$$
y=a \oplus b
$$

NOT AND (NAND) Gate

- Truth table

a	b	y
0	0	1
0	1	1
1	0	1
1	1	0

- Boolean algebra

$$
y=\overline{a \cdot b}
$$

NOT OR (NOR) Gate

- Truth table

a	b	y
0	0	1
0	1	0
1	0	0
1	1	0

- Boolean algebra

$$
y=\overline{a+b}
$$

Boolean Algebra

- Boolean algebra can be used to design combinational logic circuits
- OR
- $a+0=a$
- $a+a=a$
- $a+1=1$
- $a+\bar{a}=1$
- AND
- $a \cdot 0=0$
- $a \cdot a=a$
- $a \cdot 1=a$
- $a \cdot \bar{a}=0$

Boolean Algebra Properties

- Commutation

■ $a+b=b+a$

- $a \cdot b=b \cdot a$
- Association

■ $(a+b)+c=a+(b+c)$
■ $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

- Distribution

$$
\begin{aligned}
& \square a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
& \square a+(b \cdot c)=(a+b) \cdot(a+c)
\end{aligned}
$$

- Absorption
- $a+(a \cdot c)=a$
- $a \cdot(a+c)=a$

Boolean Algebra Example

- Simplify

$$
\begin{aligned}
& x \cdot y \cdot z+x \cdot y \cdot \bar{z}+x \cdot \bar{y} \cdot z+\bar{x} \cdot \bar{y} \cdot z \\
& x \cdot y \cdot(z+\bar{z})+\bar{y} \cdot z \cdot(x+\bar{x}) \\
& x \cdot y \cdot 1+\bar{y} \cdot z \cdot 1 \\
& x \cdot y+\bar{y} \cdot z
\end{aligned}
$$

DeMorgan's Theorem

■ $\overline{a+b+c+\ldots}=\bar{a} \cdot \bar{b} \cdot \bar{c} \cdot \ldots$
■ $\overline{a \cdot b \cdot c \cdot \ldots}=\bar{a}+\bar{b}+\bar{c}+\ldots$

- Proof for $\overline{a+b}=\bar{a} \cdot \bar{b}$

a	b	$\overline{a+b}$	$\bar{a} \cdot \bar{b}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

DeMorgan's Example

- Simplify

$$
\begin{aligned}
& a \cdot \bar{b}+a \cdot(\overline{b+c})+b \cdot(\overline{b+c}) \\
& a \cdot \bar{b}+a \cdot \bar{b} \cdot \bar{c}+b \cdot \bar{b} \cdot \bar{c} \\
& a \cdot \bar{b}+a \cdot \bar{b} \cdot \bar{c} \\
& a \cdot \bar{b}
\end{aligned}
$$

DeMorgan's in Gates

- The function $f=a \cdot b+c \cdot d$ can be implemented with AND and OR gates

DeMorgan's in Gates

- Two consecutive NOT gates cancel out.

DeMorgan's in Gates

- The function $f=a \cdot b+c \cdot d$ can be simplified to use only NAND gates.

Logic Minimisation

- Any Boolean function can be implemented directly using combinational logic
- Simplifying the Boolean function will reduce the number of gates required to implement the function
- Logic minimization techniques:
- Algebraic manipulation
- Karnaugh (K) mapping (visual approach)
- Tabular approaches (for example Quine-McCluskey)
- Karnaugh mapping is usually preferred for up to about 5 variables

Truth Tables

- f is defined by the following truth table

x	y	z	f	minterms
0	0	0	1	$\bar{x} \cdot \bar{y} \cdot \bar{z}$
0	0	1	1	$\bar{x} \cdot \bar{y} \cdot z$
0	1	0	1	$\bar{x} \cdot y \cdot \bar{z}$
0	1	1	1	$\bar{x} \cdot y \cdot z$
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	$x \cdot y \cdot z$

- A minterm must contain all variables (in either complemented or uncomplemented form)

Disjunctive Normal Form

- A Boolean function expressed as the disjunction (OR) of its minterms is said to be in the Disjunctive Normal Form (DNF)
- Example:

$$
f=\bar{x} \cdot \bar{y} \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot y \cdot z+x \cdot y \cdot z
$$

- A Boolean function expressed as the ORing of ANDed variables (not necessarily minterms) is in Sum of Products (SOP) form.

$$
f=\bar{x}+y \cdot z
$$

Maxterms

- A maxterm of n Boolean variables is the disjunction of all the variables either in complemented or uncomplemented form.
- Example (referring to the truth table for f)

$$
\begin{aligned}
& \bar{f}=x \cdot \bar{y} \cdot \bar{z}+x \cdot \bar{y} \cdot z+z \cdot y \cdot \bar{z} \\
& f=(\bar{x}+y+z) \cdot(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
\end{aligned}
$$

- The maxterms of f are effectively the minterms of \bar{f} with each variable complemented.

Conjunctive Normal Form

- A Boolean function expressed as the conjunction (AND) of its maxterms is said to be in Conjunctive Normal Form (CNF)
- Example:

$$
f=(\bar{x}+y+z) \cdot(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$

- A Boolean function expressed as the ANDing of ORed variables (not necessarily maxterms) is often said to be in Product of Sums (POS) form.

Logic Simplification

- Boolean algebra can be used to simplify logical expressions.
- Note: the DNF and CNF are not simplified
- There is a technique called Karnaugh mapping that is sometimes easier (for humans to do)

Karnaugh Maps

■ Karnaugh Maps (or K-maps) are a powerful visual tool for carrying out simplification and manipulation of logical expressions with less than 6 variables.

- The K-map is a rectangular array of cells
- Each possible state of the input variables corresponds uniquely to one of the cells
- The corresponding output state is written in each cell

K-map Example

- Simplify:

$$
f=\bar{x} \cdot \bar{y} \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot y \cdot z+x \cdot y \cdot z
$$

- K-map:

K-map Example

- Group terms

■ With size equal to a power of 2
■ Large groups best since they contain fewer variables

- Groups can wrap around edges and corners

- Simplified: $f=\bar{x}+y \cdot z$

K-map Example

- Plot $f=\bar{a} \cdot b+b \cdot \bar{c} \cdot \bar{d}$

- In a 4 variable map:
- 1 variable term occupies 8 cells
- 2 variable terms ocuppy 4 cells
- 3 variable terms occupy 2 cells, etc.

K-map Example

- Plot $f=\bar{b}$

K-map Example

- Plot $f=\bar{b} \cdot \bar{d}$

K-map Example

■ Simplify $f=\bar{a} \cdot b \bar{d}+b \cdot c \cdot d+\bar{a} \cdot b \cdot \bar{c} \cdot d+c \cdot d$

- $f=\bar{a} \cdot b+c \cdot d$

POS Simplification

- Note that the previous examples yielded simplified expressions in the SOP form
- Suitable for implementations using AND followed by OR gates, or only NAND gates
- Sometimes we may wish to get a simplified expression in POS form
- Suitable for implementations using OR followed by AND gates, or only NOR gates
- To do this we group zeros in the map, then apply DeMorgan's and complement

POS Example

■ Simplify $f=\bar{a} \cdot b+b \cdot \bar{c} \cdot \bar{d}$ into POS form

- Simplified: $\bar{f}=\bar{b}+a \cdot c+a \cdot d$
- Applying DeMorgan's: $f=b \cdot(\bar{a}+\bar{c}) \cdot(\bar{a}+\bar{d})$

Expressions in POS Form

- Apply DeMorgan's and take the complement, that is, \bar{f} is now in SOP form
- Fill in zeros in table, that is, plot \bar{f}
- Fill remaining cells with ones, that is, plot f
- Simplify in the usual way by grouping ones to simplify f

Don't Care Conditions

- Sometimes we do not care about the output value of a combinational logic circuit, for example, if certain input combinations can never occur.

■ These are called don't care conditions

- In a simplification they may be treated as 0 or 1 depending on which gives the simplest result

Don't Care Conditions Example

- Simplify the function $f=\bar{a} \cdot \bar{b} \cdot d+\bar{a} \cdot c \cdot d+a \cdot c \cdot d$ with don't care conditions $\bar{a} \cdot \bar{b} \cdot \bar{c} \cdot \bar{d}, \bar{a} \cdot \bar{b} \cdot c \cdot \bar{d}, \bar{a} \cdot b \cdot \bar{c} \cdot d$

- Simplified: $f=\bar{a} \cdot \bar{b}+c \cdot d$ or $f=\bar{a} \cdot d+c \cdot d$

K-map Definitions

- Cover - a term is said to cover a minterm if that minterm is part of that term

■ Prime implicant - a term that cannot be further combined

- Essential term - a prime implicant that covers a minterm that no other prime implicant covers
- Covering set - a minimum set of prime implicants which includes all essential terms plus any other prime implicants required to cover all minterms

Combinational Circuit Example

- Truth table

a	b	out
0	0	1
0	1	0
1	0	0
1	1	1

Half Adder

- Adds two single bit binary numbers a and b (note: no carry input)
- Truth table

a	b	$c_{\text {out }}$	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full adder

- Adds two single bit numbers a and b (note: with a carry input)
- Truth table

$c_{\text {in }}$	a	b	$c_{\text {out }}$	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ripple Carry Adder

- The half adder and full adder implement two bit binary addition with and without carry-in
- In general, we need to add two n bit binary numbers
- The ripple carry adder is n full adders cascaded together.
- Example: 4 bit adder

- Note: if a is complemented and c_{0} set to 1 , then the operation is: $s=b-a$

Bit-Level Multiplexor

- A bit-level multiplexor has data signals a and b and a control signal c outputs a or b depending on c
- Truth table

a	b	c	out
0	0	0	$0(b)$
0	0	1	$0(a)$
0	1	0	$1(b)$
0	1	1	$0(a)$
1	0	0	$0(b)$
1	0	1	$1(a)$
1	1	0	$1(b)$
1	1	1	$1(a)$

Bit-Level Multiplexor

Arithmetic Logic Unit

- Combinational logic - a more complex version of a multiplexor
- Control signal selects function computed
- Also computes condition codes
- Example: four function ALU

Memory Elements

- Sequential logic has a memory
- A memory stores data
- The snapshot of the memory is called the state
- A one bit memory is called bistable, that is, it has two internal states
- Flip-flops and latches are implementations of bistables

RS Latch

- An RS latch is a memory element with two inputs: reset (R) and set (S), and two outputs: Q and \bar{Q}

S	R	Q^{\prime}	$\overline{Q^{\prime}}$	comment
0	0	Q	\bar{Q}	hold
0	1	0	1	reset
1	0	1	0	set
1	1	0	0	illegal

where Q^{\prime} is the next state and Q is the current state.

RS Latch

RS Latch State Transition Table

- A state transition table is a way of viewing the operation of an RS latch.

Q	S	R	Q^{\prime}	comment
0	0	0	0	hold
0	0	1	0	reset
0	1	0	1	set
0	1	1	0	illegal
1	0	0	1	hold
1	0	1	0	reset
1	1	0	1	set
1	1	1	0	illegal

Clocks and Synchronous Circuits

- The RS latch output state changes occur directly in response to changes in the inputs. This is called asynchronous operation.
- Most sequential circuits employ synchronous operation.
- The output is constrained to change only at a time specified by a global enabling signal
- This signal is generally called the system clock
- The clock is typically a square wave signal at a particular frequency that imposes order on the state changes.

Gated RS Latch

- The RS latch can be modified to only change state when a valid enable signal (such as from the system clock) is present.

Registers

- Store a word of data
- Different from program registers seen in assembly code

■ Collection of edge-triggered latches (one for every bit in word)

- Loads input on rising edge of clock

Register Operation

- Stores data bits
- Generally acts as a barrier between input and output
- As clock rises, loads input

State Machine Example

- Accumulator circuit
- Load or accumulate on each cycle

Random-Access Memory

- Stores multiple words of memory
- Address input specifies which word to read or write
- Register file
- Holds values of program registers

Register File Timing

- Reading

■ Like combinational logic

- Output generated based on input address (after some delay)
- Writing
- Like register
- Update only as clock rises

Summary

- Computation
- Performed by combinational logic
- Computes Boolean functions
- Continuously reacts to input changes
- Storage

■ Registers
■ Hold single words
■ Loaded as clock rises
■ Random-access memories

- Hold multiple words
- Can have multiple read or write ports

■ Read a word when address input changes
■ Write word as clock rises

