
Overview
CSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html


Outline

Course theme

Realities of programming



Course Theme

Systems Knowledge
How hardware combine to support the execution of application
programs

How you as a programmer can best use these resources

Useful outcomes from taking CSC 235
Become more effective programmers

Prepare for later systems courses



It is Important to Understand How Things
Work

Most CS courses emphasize abstraction
Abstract data types

Asymptotic analysis

These abstractions have limits
Especially in the presence of bugs

Need to understand the details of underlying implementations

Sometimes the abstract interfaces do not provide the level of
control or performance you need



Realities of Programming

ints are not integers and floats are not reals

knowing assembly is useful

memory matters

there is more to performance than asymptotic complexity

computers do more than execute programs



ints and floats

Example: is x2 ≥ 0?
float: yes

int: ?

Example: is (x + y) + z = x + (y + z)?
unsigned and signed ints: yes

floats: ?



Computer Arithmetic

Arithmetic operations have important mathematical properties

But, we cannot assume all the “usual” mathematical properties
due to finiteness of representations

integer operations satisfy “ring” properties: commutativity,
associativity, and distributivity

floating point operations satisfy “ordering” properties:
monotonicity and values of signs

Observation
Need to understand which abstractions apply in which contexts

Import issues for compiler writers and serious application
programmers



Knowing Assembly is Useful

You will probably never write programs in assembly
compilers are typically much better and more patient than you
are

But, understanding assembly is key to the machine-level
execution model

behavior of programs in the presence of bugs

tuning program performance

implementing system software

creating / fighting malware



Memory Matters

Memory is not unbounded
it must be allocated and managed

many applications are memory dominated

Memory referencing bugs are especially pernicious
effects are distant in both time and space

Memory performance is not uniform
cache and virtual memory effects can greatly affect program
performance

adapting program to characteristics of memory system can lead
to major speed improvements



Memory Referencing Bug Example

Code with a bug:

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

What is the result of fun(6)?



Memory Referencing Bug Example



Memory Referencing Errors

C and C++ do not provide any memory protection
out of bounds array references

invalid pointer values

abuses of malloc/free

Can lead to nasty bugs
Whether or not a bug has any effect depends on the system and
compiler

How do we deal with this?
program in a memory safe language

understand what possible interactions may occur

use or develop tools to detect referencing errors



Asymptotic Complexity and Performance

Constant factors matter

Exact operation count does not predict performance
must optimize at multiple levels: algorithm, data representation,
procedures, and loops

Must understand the system to optimize performance
how programs are compiled and executed

how to measure program performance and identify bottlenecks

how to improve performance without destroying code
modularity and generality



Memory System Performance Example

Slower

void cpy(int src[2048][2048], int dst[2048][2048]) {
for (int j = 0; j < 2048; j++)

for (int i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

Faster

void cpy(int src[2048][2048], int dst[2048][2048]) {
for (int i = 0; i < 2048; j++)

for (int j = 0; j < 2048; i++)
dst[i][j] = src[i][j];

}



Computers do more than execute
programs

They need to get data in and out
I/O system critical to program reliability and performance

They communicate with each other with each other over
networks

Many system-level issues arise in the presence of a network

concurrent operations by autonomous processes

coping with unreliable media

cross platform compatibility

complex performance issues



Course Perspective

This course is programmer-centric
By knowing more about the underlying system, you can be more
effective as a programmer

Enable you to write programs that are more reliable and efficient


