
Sequential Implementation
CSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/afs/cs/academic/class/15349-s02/3e/www/


Y86-64 Instruction Set



Building Blocks

Combinational Logic
Compute Boolean functions of inputs
Continuously respond to input changes
Operate on data and implement control

Storage Elements
Store bits
Addressable memories
Non-addressable registers
Loaded only as clock rises



Sequential Hardware Structure

State
Program counter register (PC)
Condition code register (CC)
Register file
Memories

Instruction flow
Read instruction at address specified by PC
Process through stages
Update program counter



Sequential Stages

Fetch: read instruction from memory
Decode: read program registers
Execute: compute value or address
Memory: read or write data
Write back: write program registers
PC: update program counter



Sequential Hardware Structure



Instruction Decoding

Instruction format (10 bytes max)
Instruction byte: icode:ifun
Optional register byte: rA:rB
Optional constant word: valC



Executing Arithmetic/Logical Operation

Fetch: read 2 bytes
Decode: read operand registers
Execute: perform operation and set condition codes
Memory: do nothing
Write back: update register
PC update: increment PC by 2



Stage Computation: Arithmetic/Logical
Operations

Stage Op rA rB Action

Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC

Decode valA = R[rA] read operand A
valB = R[rB] read operand B

Execute valE = valB OP valA Perform ALU operation
Memory
Write back R[rB] = valE Write back result
PC update PC = valP update PC



Executing rmmovq

Fetch: read 10 bytes
Decode: read operand registers
Execute: compute effective address
Memory: write to memory
Write back: do nothing
PC update: increment PC by 10



Stage Computation: rmmovq

Stage rmmovq rA, D(rB) Action

Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valC = M8[PC+2] read 8 byte displacement
valP = PC+10 compute next PC

Decode valA = R[rA] read operand A
valB = R[rB] read operand B

Execute valE = valB + valC compute effective address (ALU)
Memory M8[valE] = valA write 8 byte value to memory
Write back
PC update PC = valP update PC



Executing popq

Fetch: read 2 bytes
Decode: read stack pointer
Execute: increment stack pointer by 8
Memory: read from old stack pointer
Write back: update stack pointer and write result to register
PC update: increment PC by 2



Stage Computation: popq

Stage popq rA Action

Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC

Decode valA = R[%rsp] read stack pointer
valB = R[%rsp] read stack pointer

Execute valE = valB + 8 increment stack pointer (ALU)
Memory valM = M8[valA] read 8 bytes from stack
Write back R[%rsp] = valE update stack pointer

R[rA] = valM write back result
PC update PC = valP update PC



Executing Conditional Moves

Fetch: read 2 bytes
Decode: read operand registers
Execute: if not condition, then set destination register to 0xF
Memory: do nothing
Write back: update register (or not)
PC update: increment PC by 2



Stage Computation: Conditional Move

Stage cmovXX rA, rB Action

Fetch icode:ifun = M1[PC] read instruction byte
rA:rB = M1[PC+1] read register byte
valP = PC+2 compute next PC

Decode valA = R[rA] read operand A
valB = 0 read stack pointer

Execute valE = valB + valA pass val through ALU (valA + 0)
if !Cond(CC,ifun) rB = 0xF (disable register update)

Memory
Write back R[rB] = valE write back result
PC update PC = valP update PC



Executing Jumps

Fetch: read 9 bytes and increment PC by 9
Decode: do nothing
Execute: determine whether to take branch based on jump
condition codes
Memory: do nothing
Write back: do nothing
PC update: set PC to destination if branch taken or to
incremented PC if not branch



Stage Computation: Jumps

Stage jXX Dest Action

Fetch icode:ifun = M1[PC] read instruction byte
valC = M8[PC+1] read 8 byte destination address
valP = PC+9 fall through address

Decode
Execute Cnd = Cond(CC, ifun) take branch?
Memory
Write back
PC update PC = Cnd ? valC : valP update PC



Executing call

Fetch: read 9 bytes and increment PC by 9
Decode: read stack pointer
Execute: decrement stack pointer by 8
Memory: write incremented PC to new value of stack pointer
Write back: update stack pointer
PC update: set PC to Dest



Stage Computation: call

Stage call Dest Action

Fetch icode:ifun = M1[PC] read instruction byte
valC = M8[PC+1] read 8 byte destination address
valP = PC+9 compute return point

Decode valB = R[%rsp] read stack pointer
Execute valE = valB + -8 decrement stack pointer (ALU)
Memory M8[valE] = valP w rite 8 byte return value on stack
Write back R[%rsp] = valE update stack pointer
PC update PC = valC set PC to destination



Executing ret

Fetch: read 1 byte
Decode: read stack pointer
Execute: increment stack pointer by 8
Memory: read return address from old stack pointer
Write back: update stack pointer
PC update: set PC to return address



Stage Computation: ret

Stage ret Action

Fetch icode:ifun = M1[PC] read instruction byte
Decode valA = R[%rsp] read operand stack pointer

valB = R[%rsp] read operand stack pointer
Execute valE = valB + 8 increment stack pointer (ALU)
Memory valM = M8[valA] read return address
Write back R[%rsp] = valE update stack pointer
PC update PC = valM set PC to return address



Computation Steps

Stage Steps Action

Fetch icode:ifun read instruction byte
rA, rB [read register byte]
valC [read constant word]
valP compute next PC

Decode valA, srcA [read operand A]
valB, srcB [read operand B]

Execute valE perform ALU operation
Cond code [set/use condition code]

Memory valM [memory read/write]
Write back dstE [write back ALU result]

dstM [write back memory result]
PC update PC update PC



Computed Values

Fetch
icode: instruction code
ifun: instruction function
rA: instruction register A
rB: instruction register B
valC: instruction constant
valP: incremented PC



Computed Values

Decode
srcA: register ID A
srcB: register ID B
dstE: destination register E
dstM: destination register M
valA: register value A
valB: register value B



Computed Values

Execute
valE: ALU result
Cnd: branch/move flag

Memory
valM: value from memory



Sequential Hardware



Sequential Hardware

Diagram key
Blue boxes: pre-designed hardware blocks
Gray boxes: control logic
White ovals: labels for signals
Thick lines: 64-bit word values
Thin lines: 4-8 bit values
Dotted lines: 1-bit values



Fetch Logic



Fetch Logic

Predefined Blocks
PC: Register containing PC
Instruction memory: read 10 bytes (PC to PC+9)

signal invalid addresses
Split: divide instruction byte into icode and ifun
Align: get fields for rA, rB, and valC

Control Logic
Instruction valid: is the instruction valid?
icode, ifun: generate no-op if invalid address
Need regids: does the instruction have a register byte?
Need valC: does this instruction have a constant word?



Decode Logic



Decode Logic

Register File
Read ports A, B
Write ports E, M
Addresses are register IDs or 15 (0xF) (no access)

Control Logic
srcA, srcB: read port addresses
dstE, dstM: write port addresses

Signals
Cnd: indicate whether or not to perform conditional move
(computed in execute stage)



Execute Logic



Execute Logic

Units
ALU: implements 4 required functions and generates condition
code values
CC: register with 3 condition codes
cond: computes conditional jump/move flag

Control Logic
Set CC: should condition code register be loaded?
ALU A: input A to ALU
ALU B: input B to ALU
ALU fun: what function should ALU compute?



Memory Logic



Memory Logic

Memory
Reads or writes memory word

Control Logic
stat: what is instruction status?
Mem. read: should word be read?
Mem. write: should word be written?
Mem. addr.: select address
Mem. data: select data



PC Update Logic

New PC
Select next value of PC



Sequential Summary

Implementation
Express every instruction as series of simple steps
Follow same general flow for each instruction type
Assemble registers, memories, pre-designed combinational
blocks
Connect with control logic

Limitations
Too slow to be practical
In one cycle must propagate through instruction memory,
register file, ALU, and data memory
Would need to run the clock very slowly
Hardware units only active for fraction of clock cycle


