
The Memory Hierarchy
CSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html


Outline

The memory abstraction
RAM: main memory
Locality of reference
The memory hierarchy
Storage technologies and trends



Writing and Reading Memory

Write
Transfer data from CPU to memory
Example: movq %rax, 8(%rsp)
“Store” operation

Read
Transfer data from memory to CPU
Example: movq 8(%rsp), %rax
“Load” operation



Traditional Bus Structure Connecting
CPU and Memory

A bus is a collection of parallel wires that carry address, data,
and control signals

Buses are typically shared by multiple devices



Memory Read Transaction (1)

Example: movq A, %rax

CPU places address A on the memory bus



Memory Read Transaction (2)

Example: movq A, %rax

Main memory reads A from the memory bus, retrieves word x,
and places it on the bus



Memory Read Transaction (3)

Example: movq A, %rax

CPU read word x from the bus and copies it into register %rax



Memory Write Transaction (1)

Example: movq %rax, A

CPU places address A on the memory bus; main memory reads
it and waits for the corresponding data word to arrive



Memory Write Transaction (2)

Example: movq %rax, A

CPU places data word y on the bus



Memory Write Transaction (2)

Example: movq %rax, A

Main memory reads data word y from the bus and stores it at
address A



Random-Access Memory (RAM)

Key features
RAM is traditionally packaged as a chip or embedded as part of
processor chip
Basic storage unit is normally a cell (one bit per cell)
Multiple RAM chips form a memory

RAM comes in two varieties
SRAM (static RAM)
DRAM (Dynamic RAM)



RAM Technologies

DRAM
1 transistor + 1 capacitor per bit
Must refresh state periodically

SRAM
6 transistors per bit
Holds state indefinitely (but will still lose data on power loss)

Trends
SRAM scales with semiconductor technology
DRAM scaling limited by need to minimum capacitance



Enhanced DRAMs

Operation of DRAM cell has not changed since its invention
Commercialized by Intel in 1970

DRAM cores with better interface logic and faster I/0:
Synchronous DRAM (SDRAM)

Uses a conventional clock signal instead of asynchronous
control

Double data-rate synchronous DRAM (DDR SDRAM)
Double edge clocking sends two bits per cycle per pin
Different types distinguished by size of small prefetch buffer;
DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)



Conventional DRAM Organization

d × w DRAM
d · w total bits organized as d supercells of size w bits



Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2
Step 1(b): Row 2 copied from DRAM array to row buffer



Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1
Step 2(b): Supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU
Step 3: All data written back to row to provide refresh



Memory Modules



The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds



Locality

Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they have
used recently

Temporal locality:
Recently referenced items are likely to be referenced again in
the near future

Spatial locality:
Items with nearby addresses tend to be referenced close
together in time



Locality Example

sum = 0;
for (i = 0; i < n; i++) {

sum += a[i];
}
return sum

Data references
References array elements in succession (spatial)
Reference variable sum each iteration (temporal)

Instruction references
Reference instructions in sequence (spatial)
Cycle through loop repeatedly (temporal)



Qualitative Estimates of Locality

Claim: being able to look at code and get a qualitative sense of
its locality is a good skill for a professional programmer

Question: Does this function have good locality with respect to
array a?

int sum_array_rows(int a[M][N]) {
int i, j, sum = 0;
for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) }
sum += a[i][j];

}
}
return sum;

}



Locality Example

Question: can you permute the loops so that the function
scans the 3D array with a stride-1 reference pattern (and thus
have good spatial locality)?

int sum_array_3d(int a[M][N][N]) {
int i, j, k, sum = 0;
for (i = 0; i < M; i++) {

for (j = 0; j < N; j++) }
for (k = 0; k < M; k++) {

sum += a[k][i][j];
}

}
}
return sum;

}



Memory Hierarchies

Some fundamental and enduring properties of hardware and
software:

Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).
The gap between CPU and main memory speed is widening
Well-written programs tend to exhibit good locality

These fundamental properties complement each other
beautifully

The suggest an approach for organizing memory and storage
systems known as a memory hierarchy



Example Memory Hierarchy



Caches
Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device

Fundamental idea of a memory hierarchy:
For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k + 1

Why do memory hierarchies work?
Because of locality, programs tend to access data at level k
more often than they access the data at level k + 1
Thus, the storage at level k + 1 can be slower, larger, and
cheaper per bit

Big Idea (Ideal): The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but serves data to programs at the rate of the fast
storage near the top



General Cache Concepts



General Cache Concepts

A cache hit is when the data in block b is needed and is in the
cache

A cache miss is when the data in block b is needed and is in
not the cache

Types of cache misses:
Cold (compulsory) miss: occur because the cache starts empty
and this is the first reference to the block
Capacity miss: occur when the set of active cache blocks
(working set) is larger than the cache
Conflict miss: occur when the level k cache is large enough, but
multiple data objects all map to the same level k block where a
block is a small subset of the block positions at level k − 1



Storage Technologies

Magnetic disks
Store on magnetic medium
Electromechanical access

Nonvolatile (Flash) memory
Store as persistent charge
Implemented with 3D structure



Disk Geometry

Disks consist of platters, each with two surfaces
Each surface consists of concentric rings called tracks
Each track consists of sectors separated by gaps



Disk Capacity

Capacity: maximum number of bits that can be stored
Vendors express capacity in units of gigabytes (GB) or terabytes
(TB), where 1 GB = 109 Bytes and 1 TB = 1012 Bytes

Capacity is determined by these technology factors:
Recording density (bits/in): number of bits that can be
squeezed into a 1 inch segment
Track density (tracks/in): number of tracks that can be
squeezed into a 1 inch radial segment
Areal density (bits/in2): product of recording density and track
density



Disk Operation



Disk Operation



Disk Access Time

Average time to access some target sector approximated by:
Taccess = Tseek + Trotation + Ttransfer

Seek time
Time to position heads over cylinder containing target sector
Typical Tseek is 3 to 9 ms

Rotational latency
Time waiting for the first bit of target sector to pass under
read/write head
Trotation = 1

2 · 1
RPMs · 60 s

1 min
Typical rotational rate is 7,200 RPMs

Transfer time
Time to read the bits in the target sector
Ttransfer = 1

RPM · 1
avg sectors per track · 60 s

1 min



Disk Access Time Example

Given
Rotational rate = 7200 RPM
Average seek time = 9 ms
Average number of sectors per track = 400

Derived:
Trotation = 4 ms
Ttransfer = 0.02 ms
Taccess = 0.02 ms

Important points:
Access time is dominated by seek time and rotational latency
First bit in sector is the most expensive, the rest are free
SRAM access time is about 4 ns per double word, DRAM about
60 ns

Disk is about 40,000 times slower than SRAM
Disk is about 2,500 times slower than DRAM



I/O Bus



Reading a Disk Sector (1)
CPU initiates disk read by writing a command, logical block
number, and destination memory address to a port (address)
associated with the disk controller



Reading a Disk Sector (2)

Disk controller reads the sector and performs a direct memory
access (DMA) transfer into main memory



Reading a Disk Sector (3)

When the DMA transfer completes, the disk controller notifies
the CPU with an interrupt



Nonvolatile Memories

DRAM and SRAM are volatile memories
Lose information if powered off

Nonvolatile memories retain value even if powered off
Read-only memory (ROM): programmed during production
Electrically erasable PROM (EEPROM): electronic erase
capability
Flash memory: EEPROMS with partial (block level) erase
capability

Uses for Nonvolatile Memories
Firmware programs stored in a ROM
Solid state disks
Disk caches



Solid State Disks (SSDs)

Pages: 512KB to 4KB, Blocks: 32 to 128 pages
Data read/written in units of pages
Page can be written only after its block has been erased
A block wears out after about 100,000 repeated writes



SSD Tradeoffs versus Rotating Disks

Advantages
No moving parts

Disadvantages
Have the potential to wear out
More expensive per byte

Applications
Smartphones, laptops
Increasingly common in desktops and servers



Summary

The speed gap between CPU, memory and mass storage
continues to widen
Well-written programs exhibit a property called locality
Memory hierarchies based on caching close the gap by
exploiting locality
Flash memory progress outpacing all other memory and storage
technologies


