
Virtual Memory Systems
CSC 235 - Computer Organization



References

Slides adapted from CMU

http://www.cs.cmu.edu/~213/schedule.html


Review: Virtual Memory and Physical
Memory

A page table contains page table entries (PTEs) that map
virtual pages to physical pages



Translating with a k-level Page Table



Translation Lookaside Buffer (TLB)

A TLB hit eliminates the k memory accesses required to do a
page table lookup



Recall: Set Associative Cache



Review of Symbols

Basic Parameters
N = 2n: number of addresses in virtual address space
M = 2m: number of addresses in physical address space
P = 2p: page size (bytes)

Components of the virtual address (VA)
TLBI: translation lookaside buffer index
TLBT: translation lookaside buffer tag
VPO: virtual page offset
VPN: virtual page number

Components of the physical address (PA)
PPO: physical page offset (same as VPO)
PPN: physical page number



Simple Memory System Example

Addressing
14-bit virtual addresses
12-bit physical addresses
Page size = 64 bytes



Simple Memory System TLB

16 entries
4-way associative



Simple Memory System Page Table

Only showing the first 16 entries (out of 256)



Simple Memory System Cache

16 lines, 4-byte cache line size
Physically addressed
Direct mapped



Address Translation Example

Virtual Address: 0x3d4 = 00001111 010100
VPN: 0x0F, TLBI: 0x03, TLBT: 0x03, PPN: 0x0D
Hit, no fault



Address Translation Example

Physical Address:
PPN: 001101, PPO: 010100
CO: 0, CI: 0x5, CT: 0x0D, Hit: yes, Byte: 0x36



Intel Core i7 Memory System



End-to-end Core i7 Address Translation



Core i7 Level 1-3 Page Table Entries

Each entry references a 4K child page table:
P: child page table present in physical memory
R/W: read-only or read-write access permission for all reachable
pages
U/S: user or supervisor (kernel) mode access permission for all
reachable pages.
WT: Write-through or write-back cache policy for child page
table
A: reference bit (set by MMU on reads and writes, cleared by
software)
PS: Page size either 4KB or 4MB (defined for level 1 PTEs only)
Page table physical base address: 40 most significant bits or
physical page table address (forces page tables to be 4KB
aligned)
XD: disable or enable instruction fetches from all pages
reachable from this PTE



Core i7 Page Table Translation



Trick for Speeding Up L1 Access

Observation
Bits that determine the CI are identical in virtual and physical
address
Can index into cache while address translation is taking place
Generally there is a hit in the TLB, so PPN bits (CT bits) are
available quickly
“Virtually indexed, physically tagged”
Cache carefully sized to make this possible



Virtual Address Space of a Linux Process



Linux Organizes VM as Collection of
“Areas”

pgd: page global directory address; points to L1 page table
vm_prot: read/write permissions for this area
vm_flags: pages shared with other processes or private to this
process



Linux Page Fault Handling

Read from a non-existing page: segmentation fault
Read from data area: normal page fault
Write to text area: violating permission by writing to a
read-only page; Linux reports a segmentation fault



Memory Mapping

VM areas initialized by associating them with disk objects
Called memory mapping

Area can be backed by (that is, get its initial values from):
Regular file on disk (for example, an executable object file)

Initial page bytes come from a section of a file
Anonymous file (that is, nothing)

First fault will allocate a physical page full of zeros
Once the page is written to (dirtied), it is like any other page

Dirty pages are copied back and forth between memory and a
special swap file



Review: Memory Management and
Protection

Code and data can be isolated or shared among processes



Sharing Revisited: Shared Objects
Process 1 maps the shared object (on disk)
Process 2 maps the same shared object
Note that the virtual addresses can be different, but the
difference must be a multiple of the page size
Two processes mapping a private copy-on-write (COW) object
Area flagged as private copy-on-write
PTEs in private areas are flagged as read-only



Sharing Revisited: Private Copy-on-Write
(COW) Objects

Instruction writing to private page triggers protection fault
Handler creates new R/W page
Instruction restarts upon handler return
Copying deferred as long as possible



Finding Shareable Pages

Kernel Same-Page Merging
OS scans through all of physical memory looking for duplicate
pages
When found, merge into a single copy marked as copy-on-write
Implemented in Linux kernel in 2009
Limited to pages marked as likely candidates
Especially useful when processor running many virtual machines



Summary

VM requires hardware support
Exception handling mechanism
TLB
Various control registers

VM requires OS support
Managing page tables
Implementing page replacement policies
Managing file system

VM enables many capabilities
Loading programs from memory
Providing memory protection


