
CSC 548 - Artificial Intelligence II, Spring 2019

Resolution Theorem Proving



Proof Methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

Legitimate (sound) generation of new sentences from old.
Proof = a sequence of inference rule applications.
Typically require translation of sentences into a normal form.
Meaning is context-independent

Model checking

Truth table enumeration
Improved backtracking
Heuristic search in model space (sound but not complete)



Propositional Resolution

Resolution rule:

α ∨ β
¬β ∨ γ
α ∨ γ

Resolution refutation:

Convert all sentences to conjunctive normal form (CNF)
Negate the desired conclusion (converted to CNF)
Apply resolution rule until either

derive false (a contradiction)
cannot apply any more

Resolution refutation is sound and complete



Conjunctive Normal Form (CNF)

Conjunctive Normal Form (CNF):
conjunction of disjunction of literals

Example: (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

(A ∨ ¬B) is a clause

A and ¬B are literals, each of which is a variable or a
negation of a variable

Every sentence in propositional logic can be written in CNF



Conversion to CNF

1 Eliminate ↔ replacing α↔ β with (α→ β) ∧ (β → α)

2 Eliminate →, replacing α→ β with ¬α ∨ β.

3 Move ¬ inwards using de Morgan’s rules and double-negation

4 Apply distributivity law (∨ over ∧) and flatten

Example:

P ↔ (Q ∨ R)

(P → (Q ∨ R)) ∧ ((Q ∨ R)→ P)

(¬P ∨ Q ∨ R) ∧ (¬(Q ∨ R) ∨ P)

(¬P ∨ Q ∨ R) ∧ ((¬Q ∧ ¬R) ∨ P)

(¬P ∨ Q ∨ R) ∧ (¬Q ∨ P) ∧ (¬R ∨ P)



Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬R Negated Conclusion

5 Q ∨ R 1,2

6 ¬P 2,4 ∗
7 ¬Q 3,4

8 R 5,7

9 � 4,8



The Power of False

Prove Z

1 P

2 ¬P

Step Formula Derivation

1 P Given

2 ¬P Given

4 ¬Z Negated Conclusion

5 � 1,2

Note that (P ∨ ¬P)→ Z is valid

Any conclusion follows from a contradiction – and so strict
logic systems are brittle.



Proof Strategies

Unit preference: prefer a resolution step involving an unit
clause (clause with one literal).

Produces shorter clause – which is good since we are trying to
produce a zero-length clause, that is, a contradiction.

Set of support: choose a resolution involving the negated goal
or any clause derived from the negated goal.

We are trying to produce a contradiction that follows from the
negated goal, so these are “relevant” clauses.
If a contradiction exists, one can find one using the set of
support strategy.



First-Order Resolution

Syllogism

∀x P(x)→ Q(x)
P(A)

Q(A)

Equivalent by definition of implication

∀x ¬P(x) ∨ Q(x)
P(A)

Q(A)

Substitute A for x , then propositional resolution

∀x ¬P(x) ∨ Q(x)
P(A)

Q(A)

The key is finding the correct substitutions for the variables.



Substitutions

An atomic sentence: P(x ,F (y),B)

Substitution Substitution Comment

Instances {v1/t1, . . . , vn/tn}
P(z ,F (w),B) {x/z , y/w} alphabetic variant

P(x ,F (A),B) {y/A}
P(G (z),F (A),B) {x/G (z), y/A}
P(C ,F (A),B) {x/C , y/A} ground instance



Unification

Expressions ω1 and ω2 are unifiable iff there exists a
substitution σ such that ω1σ = ω2σ

Let ω1 = x and ω2 = y , the following are unifiers

σ ω1σ ω2σ

{y/x} x x

{x/y} y y

{x/F (A), y/F (A)} F (A) F (A)

{x/A, y/A} A A



Most General Unifier

g is the most general unifier of ω1 and ω2 iff for all unifiers σ,
there exists σ′ such that ω1σ = (ω1g)σ′ and ω2σ = (ω2g)σ′

ω1 ω2 MGU

P(x) P(A) {x/A}
P(F (x), y ,G (x) P(F (x), x ,G (x) {y/x} or {x/y}
P(F (x), y ,G (y) P(F (x), z ,G (x) {y/x , z/x}
P(x ,B,B) P(A, y , z) {x/A, y/B, z/B}
P(G (F (v)),G (u)) P(x , x) {x/G (F (v)), u/F (v)}
P(x ,F (x)) P(x , x) None



Inference Using Unification

Inference rule:

∀x ¬P(x) ∨ Q(x)
P(A)

Q(A)

For universally quantified variables, find MGU {x/A} and
proceed as in propositional resolution.



Resolution with Variables

First-order resolution rule:

α ∨ φ
¬ψ ∨ β

(α ∨ β)σ

where σ = MGU(ψ, φ)

Example

P(x) ∨ Q(x , y)
¬P(A) ∨ R(B, z)

(Q(x , y) ∨ R(B, z))σ

σ = {x/A}



Resolution with Variables Example

Another example:

P(x) ∨ Q(x , y)
¬P(A) ∨ R(B, x)

(Q(x , y) ∨ R(B, x))σ

All variables are implicitly universally quantified and the scope
of a variable is local to a clause. Need to rename to keep
variables distinct.

∀x1y P(x1) ∨ Q(x1, y)
∀x2 ¬P(A) ∨ R(B, x2)

(Q(x1, y) ∨ R(B, x2))σ

σ = {x1/A}



Resolution

Input are sentences in conjunctive normal form with no
apparent quantifiers (implicit universal quantifiers).

How to we go from the full range of sentences in FOL, with
the full range of quantifiers, to sentences that enable us to use
resolution as our single inference rule?

We will convert the input sentences into a new normal form
called clausal form (also called prenex normal form).



Converting to Clausal Form

1 Eliminate implications (→ and ↔)

2 Drive in negation (deMorgan’s laws and quantifiers)

3 Rename variables apart

4 Skolemize

substitute a brand new name for each existentially quantified
variable
substitute a new function of all universally quantified variables
in enclosing scopes for each existentially quantified variable

5 Drop universal quantifiers

6 Convert to CNF

7 Rename the variables in each clause



Example: Convert to Clausal Form

a. “John owns a dog”

∃x Dog(x) ∧ Owns(John, x)

Dog(Fido) ∧ Owns(John,Fido)

b. “Anyone who owns a dog is a lover of animals”

∀x (∃y Dog(y) ∧ Owns(x , y))→ LovesAnimals(x)

∀x (¬∃y Dog(y) ∧ Owns(x , y)) ∨ LovesAnimals(x)

∀x ∀y ¬(Dog(y) ∧ Owns(x , y)) ∨ LovesAnimals(x)

∀x ∀y ¬Dog(y) ∨ ¬Owns(x , y) ∨ LovesAnimals(x)

¬Dog(y) ∨ ¬Owns(x , y) ∨ LovesAnimals(x)



Example: Convert to Clausal Form

c. “Lovers of animals do not kill animals”

∀x LovesAnimals(x)→ (∀y Animal(y)→ ¬Kill(x , y))

∀x ¬LovesAnimals(x) ∨ (∀y Animal(y)→ ¬Kill(x , y))

∀x ¬LovesAnimals(x) ∨ (∀y ¬Animal(y) ∨ ¬Kill(x , y))

¬LovesAnimals(x) ∨ ¬Animal(y) ∨ ¬Kill(x , y)

d. “Either John killed Tuna or curiosity killed Tuna”

Kill(John,Tuna) ∨ Kill(Curiosity ,Tuna)

e. “Tuna is a cat”

Cat(Tuna)

f. “All cats are animals”

¬Cat(x) ∨ Animal(x)



Example: Resoution Proof – Curiosity Killed the Cat

1 Dog(Fido) a

2 Owns(John,Fido) a

3 ¬Dog(y) ∨ ¬Owns(x , y) ∨ LovesAnimals(x) b

4 ¬LovesAnimals(x) ∨ ¬Animal(y) ∨ ¬Kill(x , y) c

5 Kill(John,Tuna) ∨ Kill(Curiosity ,Tuna) d

6 Cat(Tuna) e

7 ¬Cat(x) ∨ Animal(x) f

8 ¬Kill(Curiostiy ,Tuna) Neg

9 Kill(John,Tuna) 5,8

10 Animal(Tuna) 6,7 {x/Tuna}
11 ¬LovesAnimals(John) ∨ ¬Animal(Tuna) 4,9 {x/John, y/Tuna}
12 ¬LovesAnimals(John) 10,11

13 Dog(y) ∨ Owns(John, y) 3,12 {x/John}
14 ¬Dog(Fido) 13,2 {x/Fido}
15 � 14,1


