CSC 548 - Artificial Intelligence II, Spring 2019

Resolution Theorem Proving

Proof Methods

- Proof methods divide into (roughly) two kinds:
- Application of inference rules

■ Legitimate (sound) generation of new sentences from old.

- Proof $=$ a sequence of inference rule applications.
- Typically require translation of sentences into a normal form.
- Meaning is context-independent
- Model checking
- Truth table enumeration
- Improved backtracking
- Heuristic search in model space (sound but not complete)

Propositional Resolution

■ Resolution rule:

$$
\begin{gathered}
\alpha \vee \beta \\
\neg \beta \vee \gamma \\
\frac{\neg \vee \gamma}{}
\end{gathered}
$$

- Resolution refutation:
- Convert all sentences to conjunctive normal form (CNF)
- Negate the desired conclusion (converted to CNF)
- Apply resolution rule until either

■ derive false (a contradiction)

- cannot apply any more

■ Resolution refutation is sound and complete

Conjunctive Normal Form (CNF)

- Conjunctive Normal Form (CNF): conjunction of disjunction of literals
- Example: $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$
- $(A \vee \neg B)$ is a clause
- A and $\neg B$ are literals, each of which is a variable or a negation of a variable
- Every sentence in propositional logic can be written in CNF

Conversion to CNF

1 Eliminate \leftrightarrow replacing $\alpha \leftrightarrow \beta$ with $(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$
2 Eliminate \rightarrow, replacing $\alpha \rightarrow \beta$ with $\neg \alpha \vee \beta$.
3 Move \neg inwards using de Morgan's rules and double-negation
4 Apply distributivity law (\vee over \wedge) and flatten

- Example:

$P \leftrightarrow(Q \vee R)$
$(P \rightarrow(Q \vee R)) \wedge((Q \vee R) \rightarrow P)$
$(\neg P \vee Q \vee R) \wedge(\neg(Q \vee R) \vee P)$
$(\neg P \vee Q \vee R) \wedge((\neg Q \wedge \neg R) \vee P)$
$(\neg P \vee Q \vee R) \wedge(\neg Q \vee P) \wedge(\neg R \vee P)$

Resolution Example

Step	Formula	Derivation
1	$P \vee Q$	Given
2	$\neg P \vee R$	Given
3	$\neg Q \vee R$	Given
4	$\neg R$	Negated Conclusion
5	$Q \vee R$	1,2
6	$\neg P$	$2,4 *$
7	$\neg Q$	3,4
8	R	5,7
9	\square	4,8

The Power of False

$$
\begin{aligned}
& \text { Prove } Z \\
& \begin{array}{|l|l|}
\hline 1 & P \\
2 & \neg P \\
\hline
\end{array}
\end{aligned}
$$

Step	Formula	Derivation
1	P	Given
2	$\neg P$	Given
4	$\neg Z$	Negated Conclusion
5	\square	1,2

■ Note that $(P \vee \neg P) \rightarrow Z$ is valid

- Any conclusion follows from a contradiction - and so strict logic systems are brittle.

Proof Strategies

■ Unit preference: prefer a resolution step involving an unit clause (clause with one literal).

- Produces shorter clause - which is good since we are trying to produce a zero-length clause, that is, a contradiction.
- Set of support: choose a resolution involving the negated goal or any clause derived from the negated goal.
- We are trying to produce a contradiction that follows from the negated goal, so these are "relevant" clauses.
- If a contradiction exists, one can find one using the set of support strategy.

First-Order Resolution

- Syllogism

$$
\begin{gathered}
\forall x P(x) \rightarrow Q(x) \\
\frac{P(A)}{Q(A)}
\end{gathered}
$$

- Equivalent by definition of implication

$$
\begin{gathered}
\forall x \neg P(x) \vee Q(x) \\
\frac{P(A)}{Q(A)}
\end{gathered}
$$

■ Substitute A for x, then propositional resolution

$$
\begin{gathered}
\forall x \neg P(x) \vee Q(x) \\
\frac{P(A)}{Q(A)}
\end{gathered}
$$

- The key is finding the correct substitutions for the variables.

Substitutions

■ An atomic sentence: $P(x, F(y), B)$

Substitution Instances	Substitution $\left\{v_{1} / t_{1}, \ldots, v_{n} / t_{n}\right\}$	Comment
$P(z, F(w), B)$	$\{x / z, y / w\}$	alphabetic variant
$P(x, F(A), B)$	$\{y / A\}$	
$P(G(z), F(A), B)$	$\{x / G(z), y / A\}$	
$P(C, F(A), B)$	$\{x / C, y / A\}$	ground instance

Unification

■ Expressions ω_{1} and ω_{2} are unifiable iff there exists a substitution σ such that $\omega_{1} \sigma=\omega_{2} \sigma$

- Let $\omega_{1}=x$ and $\omega_{2}=y$, the following are unifiers

σ	$\omega_{1} \sigma$	$\omega_{2} \sigma$
$\{y / x\}$	x	x
$\{x / y\}$	y	y
$\{x / F(A), y / F(A)\}$	$F(A)$	$F(A)$
$\{x / A, y / A\}$	A	A

Most General Unifier

- g is the most general unifier of ω_{1} and ω_{2} iff for all unifiers σ, there exists σ^{\prime} such that $\omega_{1} \sigma=\left(\omega_{1} g\right) \sigma^{\prime}$ and $\omega_{2} \sigma=\left(\omega_{2} g\right) \sigma^{\prime}$

ω_{1}	ω_{2}	MGU
$P(x)$	$P(A)$	$\{x / A\}$
$P(F(x), y, G(x)$	$P(F(x), x, G(x)$	$\{y / x\}$ or $\{x / y\}$
$P(F(x), y, G(y)$	$P(F(x), z, G(x)$	$\{y / x, z / x\}$
$P(x, B, B)$	$P(A, y, z)$	$\{x / A, y / B, z / B\}$
$P(G(F(v)), G(u))$	$P(x, x)$	$\{x / G(F(v)), u / F(v)\}$
$P(x, F(x))$	$P(x, x)$	None

Inference Using Unification

- Inference rule:

$$
\begin{gathered}
\forall x \neg P(x) \vee Q(x) \\
\frac{P(A)}{Q(A)}
\end{gathered}
$$

■ For universally quantified variables, find MGU $\{x / A\}$ and proceed as in propositional resolution.

Resolution with Variables

- First-order resolution rule:

$$
\begin{gathered}
\alpha \vee \phi \\
\frac{\neg \psi \vee \beta}{(\alpha \vee \beta) \sigma}
\end{gathered}
$$

where $\sigma=\operatorname{MGU}(\psi, \phi)$
■ Example

$$
\begin{aligned}
& P(x) \vee Q(x, y) \\
& \frac{\neg P(A) \vee R(B, z)}{(Q(x, y) \vee R(B, z)) \sigma} \\
& \sigma=\{x / A\}
\end{aligned}
$$

Resolution with Variables Example

- Another example:

$$
\begin{gathered}
P(x) \vee Q(x, y) \\
\neg P(A) \vee R(B, x) \\
(Q(x, y) \vee R(B, x)) \sigma
\end{gathered}
$$

- All variables are implicitly universally quantified and the scope of a variable is local to a clause. Need to rename to keep variables distinct.

$$
\begin{aligned}
& \forall x_{1} y P\left(x_{1}\right) \vee Q\left(x_{1}, y\right) \\
& \forall x_{2} \neg P(A) \vee R\left(B, x_{2}\right) \\
& \left(Q\left(x_{1}, y\right) \vee R\left(B, x_{2}\right)\right) \sigma
\end{aligned}
$$

$$
\sigma=\left\{x_{1} / A\right\}
$$

Resolution

- Input are sentences in conjunctive normal form with no apparent quantifiers (implicit universal quantifiers).
- How to we go from the full range of sentences in FOL, with the full range of quantifiers, to sentences that enable us to use resolution as our single inference rule?
- We will convert the input sentences into a new normal form called clausal form (also called prenex normal form).

Converting to Clausal Form

1 Eliminate implications (\rightarrow and \leftrightarrow)
2 Drive in negation (deMorgan's laws and quantifiers)
3 Rename variables apart
4 Skolemize

- substitute a brand new name for each existentially quantified variable
- substitute a new function of all universally quantified variables in enclosing scopes for each existentially quantified variable

5 Drop universal quantifiers
6 Convert to CNF
7 Rename the variables in each clause

Example: Convert to Clausal Form

■ a. "John owns a dog"

$\exists x \operatorname{Dog}(x) \wedge$ Owns $($ John, $x)$
$\operatorname{Dog}($ Fido $) \wedge$ Owns $($ John, Fido $)$

■ b. "Anyone who owns a dog is a lover of animals"

$\forall x(\exists y \operatorname{Dog}(y) \wedge \operatorname{Owns}(x, y)) \rightarrow$ LovesAnimals (x)
$\forall x(\neg \exists y \operatorname{Dog}(y) \wedge \operatorname{Owns}(x, y)) \vee$ LovesAnimals (x)
$\forall x \forall y \neg(\operatorname{Dog}(y) \wedge \operatorname{Owns}(x, y)) \vee$ LovesAnimals (x)
$\forall x \forall y \neg \operatorname{Dog}(y) \vee \neg \operatorname{Owns}(x, y) \vee$ LovesAnimals (x)
$\neg \operatorname{Dog}(y) \vee \neg \operatorname{Owns}(x, y) \vee$ LovesAnimals (x)

Example: Convert to Clausal Form

■ c. "Lovers of animals do not kill animals"

$$
\begin{aligned}
& \forall x \text { LovesAnimals }(x) \rightarrow(\forall y \text { Animal }(y) \rightarrow \neg \operatorname{Kill}(x, y)) \\
& \hline \forall x \neg \text { LovesAnimals }(x) \vee(\forall y \operatorname{Animal}(y) \rightarrow \neg \operatorname{Kill}(x, y)) \\
& \hline \forall x \neg \operatorname{LovesAnimals}(x) \vee(\forall y \neg \operatorname{Animal}(y) \vee \neg \operatorname{Kill}(x, y)) \\
& \hline \neg \operatorname{LovesAnimals}(x) \vee \neg \operatorname{Animal}(y) \vee \neg \operatorname{Kill}(x, y)
\end{aligned}
$$

■ d. "Either John killed Tuna or curiosity killed Tuna"
Kill(John, Tuna) \vee Kill(Curiosity, Tuna)
■ e. "Tuna is a cat"
Cat(Tuna)

- f. "All cats are animals"
$\neg \operatorname{Cat}(x) \vee \operatorname{Animal}(x)$

Example: Resoution Proof - Curiosity Killed the Cat

1	Dog(Fido)	a
2	Owns $($ John, Fido $)$	a
3	$\neg \operatorname{Dog}(y) \vee \neg$ Owns $(x, y) \vee$ LovesAnimals (x)	b
4	\neg LovesAnimals $(x) \vee \neg$ Animal $(y) \vee \neg$ Kill (x, y)	c
5	Kill(John, Tuna) \vee Kill(Curiosity, Tuna)	d
6	Cat(Tuna)	e
7	\neg Cat $(x) \vee$ Animal (x)	f
8	\neg Kill(Curiostiy, Tuna)	Neg
9	Kill(John, Tuna)	5,8
10	Animal(Tuna)	$6,7\{x /$ Tuna $\}$
11	\neg LovesAnimals(John) $\vee \neg$ Animal(Tuna)	$4,9\{x /$ John, $y /$ Tuna $\}$
12	\neg LovesAnimals(John $)$	10,11
13	Dog $(y) \vee$ Owns(John, $y)$	$3,12\{x /$ John $\}$
14	\neg Dog $($ Fido $)$	$13,2\{x /$ Fido $\}$
15	\square	14,1

