
CSC 223 - Advanced Scientific Programming

Python Built-In Types



Simple Values

Type Example Description

int x = 1 integers
float x = 1.0 floating point numbers
complex x = 1 + 2j complex numbers
bool x = True boolean: True/False values
str x = ’abc’ string: characters or text
NoneType x = None null value



Integers

Integer values are numbers without decimal points.

>>> x = 1

>>> type(x)

int

Python integers are variable precision; computations do not
overflow



Floating-Point Numbers

Floating-point values can store fractional numbers

Floating-point values can be defined in standard or
exponential notation

x = 0.000005

y = 5e-6

An integer can be converted to a float with the float

constructor

float (1)



Complex Numbers

Complex numbers have real and imaginary parts (both
floating point values).

Complex numbers can be created with the complex

constuctor:

>>> complex(1, 2)

(1+2j)

Or alternatively with the “j” suffix

>>> 1 + 2j

(1+2j)



String Type

Strings in Python can be created with single or double quotes

message = "what do you like?"

response = ’spam ’

Python strings have useful functions and methods

Examples:

>>> len(response)

4

>>> response.upper ()

’SPAM ’

>>> message [0] # zero -based indexing

’w’



Boolean Type

The Boolean type has two possible values: True and False.

Values of any other type can be converted into boolean values
with the bool constructor.

Examples:

>>> bool (123)

True

>>> bool (0)

False

>>> bool(’’)

False



None Type

The NoneType has only a single possible value: None

>>> type(None)

NoneType

A Python function that does not return a value returns None



Built-In Data Structures

Type Example Description

list [1, 2, 3] ordered collection
tuple (1, 2, 3) immutable ordered collection
dict {’a’: 1, ’b’: 2} unordered (key,value) mapping
set {1, 2, 3} unordered collection



Lists

Lists are the basic ordered and mutable data collection

Lists can be defined comma-separated values between square
brackets

>>> L = [2, 3, 5, 7]

Lists have many useful methods

Examples:

>>> len(L)

4

>>> L.append (11)

[2, 3, 5, 7, 11]



List Indexing

Elements of a list can be indexed for single values.

Lists use zero based indexing

>>> L = [2, 3, 5, 7, 11]

>>> L[0]

2

Lists can be indexed from the end with negative integers

>>> L[-1]

11

>>> L[-2]

7



List Slicing

Elements of a list can be sliced for multiple values.

List slicing syntax uses a colon to indicate the (inclusive) start
point and the (exclusive) end point.

>>> L = [2, 3, 5, 7, 11]

>>> L[0:3]

[2, 3, 5]

An optional third integer can be used to represent a step size

>>> L[::2]

[2, 5, 11]



Tuples

Tuples are an immutable, ordered collection

Immutable means that once a tuple is created it cannot be
changed

Tuple are defined with parentheses or using commas

>>> t1 = (1, 2, 3)

>>> t2 = 1, 2, 3

Tuples can be indexed and sliced like lists



Dictionaries

Dictionaries map keys to values

Dictionaries are created by a comma separated list of
key:value pairs between curly braces

>>> numbers = {’one ’: 1, ’two ’: 2}

Items are accessed using the key

>>> numbers[’two ’]

2



Sets

Sets are unordered collections of unique items

Sets are defined by a comma separated list of values between
curly braces

>>> primes = {2, 3, 5, 7}

>>> odds = {1, 3, 5, 7, 9}

Sets support mathematical set operations

Example

>>> primes | odds

{1, 2, 3, 5, 7, 9}

>>> primes.union(odds)

{1, 2, 3, 5, 7, 9}


