
CSC 223 - Advanced Scientific Programming

Errors and Exceptions



Errors

There are three main types of errors in Python programming:

Syntax errors: errors where the code is not valid Python
Runtime errors: errors where syntactically valid code fails to
execute
Semantic errors: errors in logic – the code executes but the
result is not expected.



Runtime Errors

Python has an exception handling framework to deal with
runtime errors.

Runtime errors typically cause an exception to occur

Examples of exceptions:

NameError – results from referencing an undefined variable
TypeError – results from undefined operations
IndexError – results from accessing an element that does not
exist.



Catching Exceptions

The try ... except clause is used to handle runtime
exceptions:

try:

print ("this gets executed first ")

except:

print ("this gets executed on runtime error ")



Catching Exceptions Explicitly

The except clause can specify which exception it handles

def safe_divide(a, b):

try:

return a / b

except ZeroDivisionError:

return 1E100

This will not handle other types of exceptions (which is
typically what you want)

>>> safe_divide (1, ’2’)

TypeError



Raising Exceptions

The raise statement is used to make an exception occur

def fibonacci(N):

if N < 0:

raise ValueError ("N must be non -negative ")

L = []

a, b, = 0, 1

while len(L) < N:

a, b = b, a + b

L.append(a)

return L



Accessing the Error Message

The error message that an exception contains can be referred
to explicitly:

try:

x = 1 / 0

except ZeroDivisionError as err:

print ("Error class is: ", type(err)

print ("Error message is:", err)



try ... except ... else ... finally

The else and finally keywords can be used for more
exception handling control

try:

print ("try something ")

except:

print ("this happens only if it fails ")

else:

print ("this happens only if it succeeds ")

finally:

print ("this happens no matter what")


