
CSC 243 - Java Programming

Java Data Types and Control Constructs

Java Types

In general, a type is collection of possible values

Main categories of Java types:

Primitive/built-in
Object/Reference

Java Built-in Types

byte 8-bit signed

short 16-bit signed

int 32-bit signed

long 64-bit signed

float 32-bit

double 64-bit

boolean true or false

char Unicode character

String a built-in class representing a sequence of characters

Java Object/Reference Types

Object types are accessed via a reference

Object a = new Object ();

Object b = a;

The assignment operator copies the reference

Java Object Construction

The constructor has the same name as the class

Any method, including the constructor, can be overloaded

The new operator creates a new instantiation of an object
using an object constructor and returns a reference to that
object

Wrapper Classes

Wrapper classes provide a mechanism to convert between
primitive and object types

Wrapper class list:

Primitive Type Wrapper Class

boolean Boolean
char Character
byte Byte
short Short
int Integer
long Long
float Float
double Double

Conversion Examples

Convert int into Integer

int x = 1;

Integer i = Integer.valueOf(x);

Integer j = x;

Convert Integer into int

Integer x = new Integer (1);

int i = x.intValue ();

int j = x;

Wrapper classes and String

Wrapper classes can also be used to convert String types to
Primitive types:

String s = "3";

int i = Integer.parseInt(s);

Basic Exception Handling

Integer.parseInt signature:

public static int parseInt(String s)

throws NumberFormatException

Handle the exception:

try {

String s = "3";

int i = Integer.parseInt(s);

}

catch (NumberFormatException e) {

// code to handle the exception

}

Java Control Flow Constructs

The basis for control flow is the boolean type

for, while, and do while loops

if and else selection

switch statements

break exits the inner-most loop or switch

continue jumps to the next iteration of the loop

Boolean Operators

Logical operators

and: &&

or: ||
not: !

Comparison operators

equal: ==

not equal: !=

less than: <

less than or equal: <=

greater than: >

greater than or equal: >=

Object Comparison

== compares the references – returns true if both operands
refer to the same object

object.equals() compares objects using an class defined
method

String s1 = new String("S");

String s2 = s1;

s1 == s2; // true

s1.equals(s2); // true

s1 = new String("S");

s1 == s2; // false

s1.equals(s2); // true

Java Static Methods

A method is a function associated with an object

A static method does not require an object instance

int x = java.lang.Integer.parseInt("3");

System.out.println("x: " + x);

An instance method requires an object reference

Integer x = new Integer (3);

System.out.println("x: " + x.intValue ());

Java Static and Non-static Data Fields

Only one copy of a static data field exists

Both static and instance methods can use a static data field

For a non-static data field, there is one copy for each
instantiated object

Only a non-static method can use a non-static data field

Java Access Modifiers

public methods and data can be used by any code that
imports the class

protected methods and data can be used only by the defining
class and derived classes

private methods and data can be used by the defining class
imports the class

If there is no explicit access restriction, then the methods and
data can be used by any class in the same package

Java Arrays

Arrays are constructed using the new operator

Arrays are initialized based on type:

numeric types (int, float, etc.) are initialized to zero
booleans are initializede to false
chars are initialized to ’\0000’
objects are initialized to null

Examples:

float [] numbers = new float [10];

int[] counts = {1, 2, 3};

Object [] objects = new Object [20];

Basic Java Array Usage

Access an element with the [] operator; if the index is outside
of the array, a ArrayIndexOutOfBoundsException is thrown

The length property contains the size of the array

Looping over arrays:

int[] numbers = {1, 2, 3};

// for loop

for (int i = 0; i < numbers.length; i++) {

System.out.println(i);

}

// foreach loop

for (int element: numbers) {

System.out.println(element);

}

