CSC 243 - Java Programming

Inheritance and Subtype Polymorphism



Inheritance

Superclass
Inheritance in Java is when one class is - attribute 1
based on another class
The base class is called the superclass + method1
The class inheriting from the superclass is
called the subclass
The subclass inherits all accessible Subclass

attributes and methods from the

superclass and may add new attributes - attribute?2

and methods
+ method?2




Java Protected Accessibility

m A private attribute or method can not be directly accessed
by a subclass

m A protected attribute or method can be accessed by any
subclass or any class in the same package



Java Inheritance Syntax

m In Java, modeling the class inheritance relationship is done by
using the extends keyword

public class Subclass extends Superclass



The this and super keywords

m The this keyword is a reference to the calling object

m The super keyword refers to the superclass
m The super keyword can be used in two ways

m To call a superclass constructor
m To call a superclass method



Overloading and Overriding Methods

Overloading is ability to define multiple methods with the
same name but different signatures

Overriding is the ability to provide a different implementation
of a method in a subclass

An overridden method has the same name and signature as
the method in the superclass

Java provides an annotation for overriding methods

public class C2 extends C1 {
@0verride
public String toString() {
return super.toString() + "C2";

}



Preventing Extending and Overriding

m The final keyword can prevent a class from being extended

public final class C

m The final keyword can also prevent a method from being
overridden

public class C {
public final method m() {}
+



Subtype Polymorphism

In Java, a class defines a type
A type defined by a subclass is called a subtype
A type defined by a superclass is called a supertype

Subtype polymorphism allows a variable of a supertype to
refer to a subtype object



Declared and Actual Types

m The declared type of a variable is type that declares a variable

m The actual type of a variable is the is the type that it is
constructed as

m When a method is invoked by an object, the actual type is
used to determine the appropriate method to call

m Example

// the
// the
Object

System.

declared type for o is Object
actual type of o is String

o = new String("Hi");
out.println(o.toString());



Object Casting

m Implicit casting occurs when an object’s declared type is a
superclass of the actual type

// the String object is implicitly
// casted to type Object
Object o = new String("Hi");

m Explicit casting must be performed to convert a superclass to
a subclass

// the 0Object o must be converted
// to a String type
String s = (String)o;



The instanceof operator

m When casting objects to a subclass, if the subclass object is
not an instance of the superclass object a
ClassCastException is thrown

m The instanceof operator returns the actual type of the
variable

if (o instanceof String) {
String s = (String)o;
}



