CSC 310 - Programming Languages

Context Free Grammars

Languages and Automata

m Formal languages are important in computer science,
especially in programming languages.

m Regular languages are the weakest formal languages that are
widely used

m We also need to study context-free languages

Limitations of Regular Languages

m Intuition: A finite automaton that runs long enough must
repeat states
m A finite automaton cannot remember the number of times it
has visited a particular state
m A finite automaton has finite memory, so:
m it can only store which state it is currently in, and
® cannot count, except up to a finite limit.

m Example, the language of balanced parentheses is not regular:

{() 1i=0}

The Role of the Parser

m The parsing phase of a compiler can be thought of as a
function:

m Input: sequence of tokens from the lexer
m Output: parse tree of the program
m Not all sequences of tokens are programs, so a parser must
distinguish between valid and invalid sequences of tokens
m So, we need

m a language for describing valid sequences of tokens, and
m a method for distinguishing valid from invalid sequences of
tokens.

Context-Free Grammars

m Many programming language constructs have a recursive
structure
m Example, a statement is of the form:
m if condition then statement else statement, or
m while condition do statement, or
...
m Context-free grammars (CFGs) are a natural notation for this
recursive structure

Context-Free Grammars

m A context-free grammar consists of
m A set of terminals T
m A set of non-terminals N
m A non-terminal start symbol S
m A set of productions

m Assuming that X € N, productions are of the form
m X =€ or
B X—=>Y1Ys...Y,where Y;e NUT

Notational Conventions

m In these lecture notes
m Non-terminals are written in uppercase
m Terminals are written in lowercase
m The start symbol is the left-hand side of the first production

CFG Example

m A fragment of a simple language

STMT — if COND then STMT else STMT
STMT — while COND do STMT
STMT — id = int

m Notational abbreviation

STMT — if COND then STMT else STMT
| while COND do STMT
| id = int

CFG Example

m Classic CFG example: simple arithmetic expressions

E—ExE
|E+E
| (E)
| id

The Language of a CFG

m Productions can be read as replacement rules
m X — Y1...Y, means that X can be replaced by Y7 ...Y,

m X — € means that X can be erased (replaced with the empty
string)

The Language of a CFG: Key ldea

Begin with a string consisting of the start symbol S

Replace any non-terminal X in the string by a right-hand side
of some production X — Y;...Y,

Repeat step 2 until there are no non-terminals in the string

The Language of a CFG

Let G be a context-free grammar with start symbol S. Then
the language of G (L(G)) is:

{al...a,,|Si>al...a,,/\everya,-e T}

where
X1.. X S Y1 Y
denotes

Xl...Xn—>...—>Y1...Ym

Terminals

m A terminal has no rules for replacing it, hence the name
terminal

m Once a terminal is generated, it is permanent

m Terminals ought to be the tokens of the language

Parentheses Example

m Strings of balanced parentheses {(')’ | i > 0}

m Grammar

S—(S5)

| €

Example

m A fragment of a simple language

STMT — if COND then STMT else STMT
| while COND do STMT
lid = int

COND — (id == id)
| (id! = id)

Example Continued

m Some elements of the language
m id = int
if (id == id) then id = int else id = int
while (id !'= id) do id = int
while (id == id) do while (id !'= id) do id = int

Arithmetic Example

m Simple arithmetic expressions:
E—-E+E|ExE|(E)|id

m Some elements of the language
m id
m (id)
m (id) *id
mid + id

Notes

m The idea of a CFG is a big step
m But,
m Membership in a language is boolean; we also need the parse
tree of the input
m Must handle errors gracefully
m Need an implementation of CFGs
m Form of the grammar is important

m Many grammars generate the same language
m Parsing tools are sensitive to the grammar

Derivations and Parse Trees

m A derivation is a sequence of productions

I S S

m A derivation can be depicted as a tree
m The start symbol is the tree's root
m For a production X — Y;...Y, add children Y;...Y, to node
X

Derivation Example

m Simple arithmetic expressions:
E—-E+E|ExE|(E)|id
m String

id * id + id

E
—E+E
—ExE+E
—id«E+E
—id % id + E
—id * id + id

Derivation Example

Notes on Derivations

m A parse tree has:

m terminals at the leaves, and
m non-terminals at the interior nodes

m An in-order traversal of the leaves is the original input

m The parse tree shows the association of the operations, the
input string does not

Left-most and Right-most Derivations

m The previous example was a left-most derivation
m At each step, replace the left-most non-terminal

m There is an equivalent notion of a right-most derivation
m At each step, replace the right-most non-terminal

Right-most Derivation Example

E
—E+E
—E+id
—ExE+id
—E xid + id
—id * id + id

Derivations and Parse Trees

m Note that right-most and left-most derivations have the same
parse tree

m The difference is the order in which branches are added

Summary of Derivations

m We are not only interested in whether S € L(G), we also need
a parse tree for S

m A derivation defines a parse tree, but one parse tree may have
many derivations

m Left-most and right-most derivations are important in the
parser implementation

Ambiguity

m Grammar
E—-E+E|ExE|(E)|id

m The string id * id + id has two parse trees:

E E
1N /1N
E * E E+
| VAN /1N
T T
id id id id

Ambiguity

m A grammar is ambiguous if it has more than one parse tree for
some string

m Ambiguity leaves the meaning of some programs ill-defined

m Ambiguity is common in programming languages

Dealing with Ambiguity

m There are several ways to handle ambiguity

m The most direct method is to rewrite the grammar
unambiguously

m Example: enforcing precedence in the previous grammar

E—-T+E
| T
T—id*xT
| id
| (E)

Ambiguity: The Dangling Else

m Consider the following grammar

S — if Cthen S
| if C thenS else S
| OTHER

m This grammar is ambiguous: the expression
“if C1 then if C, then S3 else S;" has two parse trees

The Dangling Else: a Fix

m We want “else” to match the closest unmatched “then”

m We can describe this in the grammar

S — MIF
| UIF
MIF — if C then MIF else MIF
| OTHER
UIF — if C then S
| if C then MIF else UIF

Ambiguity

m No general techniques for handling ambiguity

m Impossible to automatically convert an ambiguous grammar to
an unambiguous one

m Used with care, ambiguity can simplify the grammar

m Sometimes allows more natural definitions
m but, we need disambiguation mechanisms

