CSC 310 - Programming Languages

Regular Languages

Lexical Analysis

- The goal of lexical analysis is to partition an input string into substrings where each substring is a token.
- Example:

if (i == j)
 z = 0;
else
 z = 1;

is a string of characters:

if (i == j) $\ tz = 0; else \ tz = 1;$

A lexical analyzer is called a lexer or a scanner

Tokens

- A *token* corresponds to a set of strings
- These sets depend on the programming language
- Examples:
 - Identifiers: strings of letters or digits starting with a digit
 - Integer: a non-empty string of digits
 - Keyword (reserved word): "if", "else", ...
 - Whitespace: a non-empty sequence of spaces, newlines, and tabs

What are Tokens used for?

- Classify program substrings according to role
- The output of lexical analysis is a stream of tokens
- The input to the parser is a stream of tokens
- The parser relies on token distinctions, for example, an identifier is treated differently than a keyword

Regular Languages

- There are several formalisms for specifying tokens
- Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Languages

Definition. Let Σ be a set of characters. A language over Σ is a set of strings of characters drawn from Σ. Σ is called the alphabet.

Examples of Languages

Natural language

- Alphabet: English characters
- Language: English sentences
- Note: not every string of English characters is an English sentence
- Programming language
 - Alphabet: ASCII
 - Language: C programs
 - Note: The ASCII character set is different from the English character set

Regular Expressions

- The lexical structure of most programming languages can be specified with regular expressions.
- Languages are sets of strings we need some notation for specifying which sets we want, that is, which strings are in the set.
- A regular expression (RE) is a notation for a regular language
- If A is a regular expression, then we write L(A) to refer to the language denoted by A.

Fundamental Regular Expressions

A	L(A)	Notes
а	{a}	singleton set for each symbol 'a' in the alphabet Σ
ϵ	$\{\epsilon\}$	empty string
Ø	{ }	empty language

• These are the basic building blocks of regular expressions.

Operations on Regular Expressions

A	L(A)	Notes
rs	L(r)L(s)	concatenation – r followed by s
r s	$L(r) \cup L(s)$	combination (union) – <i>r</i> or <i>s</i>
r*	L(r)*	zero or more occurrences of r (Kleene closure)

- Precedence: * (highest), concatenation, | (lowest)
- Parenthesis can be used to group REs as needed
- We abbreviate 'i' 'f' as 'if' (concatenation)

Examples

- $L(if | then | else) = \{ "if", "then", "else" \}$
- $L((0 \mid 1) \ (0 \mid 1)) = \{$ "00", "01", "10", "11" $\}$

•
$$L(0^*) = \{$$
 "", "0", "00", "000", … $\}$

■ L((1|0)(1|0)*) = set of binary numbers with possible leading zeros

Abbreviations

Abbreviation	Meaning	Notes
r+	(<i>rr</i> *)	one or more occurrences
r?	$(r \epsilon)$	zero or one occurrence
[a – z]	$(a b \ldots z)$	one character in given range
[abxyz]	(a b x y z)	one of the given characters
[^abc]	[abc]	any character except the given characters

The basic operations generate all possible regular expressions, but common abbreviations are used for convenience.

Regular Languages and Finite Automata

- Result from formal language theory: regular expressions and finite automata both define the class of regular languages
- Thus, lexical analysis uses:
 - Regular expressions for specification
 - Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

- A finite automata is a *recognizer* for the set of strings of a regular language
- A finite automaton consists of:
 - A finite input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions in $S \rightarrow S$ (mappings from states to states)

Finite Automata

Transition notation

 $s_1 \rightarrow a s_2$

is read: in state s_1 on input a go to state s_2

- Each transition "consumes" a character from the input
- At the end of input (or no transition possible)
 - If in accepting state, accept $(s \in L(R))$
 - Otherwise, reject $(s \notin L(R))$

Finite Automata State Graphs

A state:

A start state:

An accepting state:

• A transition:

A Simple Example

■ A finite automaton that accepts only "1";

Another Simple Example

- A finite automaton that accepting any number of 1s followed by a single 0
- Alphabet: $\{0,1\}$

Another Example

• Alphabet: $\{0,1\}$

Epsilon Transitions

Epsilon transitions:

■ The automaton can move from state *A* to state *B* without consuming input

Deterministic and Non-Deterministic Automata

Deterministic Finite Automata (DFA)

- One transition per input per state
- No epsilon transitions
- Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have epsilon transitions
- Finite automata have finite memory only enough to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose:
 - whether to make epsilon transitions
 - which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- An NFA accepts an input if it can get in a final state
- Exampe input: 1 0 1

NFA versus DFA

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
- A DFA can be exponentially larger than an equivalent NFA

NFA versus DFA

For a given language the NFA can be simpler than the DFA
 NFA:

Regular Expressions to Finite Automata

- The implementation of a lexical specification as a finite automata has the following transformations:
 - 1 Lexical specification
 - 2 Regular expressions
 - 3 NFA
 - 4 DFA
 - 5 Table driven implementation of DFA

Regular Expressions to NFA

- We can define an NFA for each basic regular expression and than connect the NFAs together based on the operators
- Basic regular expressions
 - ϵ transition

Input charater '0'

Regular Expressions to NFA

■ *AB*: make an *\epsilon* transition from the accepting state of *A* to start state of *B*

 A|B: create a new start state and add ε transitions from the new start state to the start states of A and B, then create a new accepting state and add ε transitions from the accepting states of A and B to the new accepting state

Regular Expressions to NFA

■ *A**: create a new start state and accepting state and add an *e* transitions: from the new start state to the start state of *A*, from the accepting state of *A* to the new start state, and from the new start state to the new accepting state.

Regular Expressions to NFA Example

- Consider the regular expression: (1|0)*1
- The NFA is

NFA to DFA (The Trick)

- Simulate the NFA
- Each state of the DFA is a non-empty subset of states of the NFA
- The start state is the set of NFA states reachable through epsilon transitions from the NFA start state
- Add a transition $S \rightarrow^a S'$ to the DFA if and only if S' is the set of NFA states reachable from any state in S after seeing the input *a* (considering epsilon transitions as well)

NFA to DFA Remark

- An NFA may be in many states at any time
- If there are N states, the NFA must be in some subset of those N states
- There are $2^N 1$ possible subsets (finitely many)

NFA to DFA Example

Implementation

• A DFA can be implemented by a 2D table T

- One dimension is "states"
- The other dimension is "input symbols"
- For every transition $S_i \rightarrow^a S_k$ define T[i, a] = k
- DFA "execution"
 - If in state S_i and input a, then read T[i, a]k and skip to state S_k
 - This is efficient

Example: Table Implementation of a DFA

	0	1
S	Т	U
Т	Т	U
U	Т	U

Implementation Continued

- The NFA to DFA conversion is the core operation of lexical analysis tools such as lex
- But, DFAs can be huge
- In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory versus Practice

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication
- DFAs consume the complete string and accept or reject it. A lexer must *find* the end of the lexeme in the input stream and then find the *next* one, etc.