
CSC 310 - Programming Languages

Regular Languages



Lexical Analysis

The goal of lexical analysis is to partition an input string into
substrings where each substring is a token.

Example:

if (i == j)

z = 0;

else

z = 1;

is a string of characters:

if (i == j)\n\tz = 0;else\n\tz = 1;

A lexical analyzer is called a lexer or a scanner



Tokens

A token corresponds to a set of strings

These sets depend on the programming language

Examples:

Identifiers: strings of letters or digits starting with a digit
Integer: a non-empty string of digits
Keyword (reserved word): “if”, “else”, . . .
Whitespace: a non-empty sequence of spaces, newlines, and
tabs



What are Tokens used for?

Classify program substrings according to role

The output of lexical analysis is a stream of tokens

The input to the parser is a stream of tokens

The parser relies on token distinctions, for example, an
identifier is treated differently than a keyword



Regular Languages

There are several formalisms for specifying tokens

Regular languages are the most popular

Simple and useful theory
Easy to understand
Efficient implementations



Languages

Definition. Let Σ be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.



Examples of Languages

Natural language

Alphabet: English characters
Language: English sentences
Note: not every string of English characters is an English
sentence

Programming language

Alphabet: ASCII
Language: C programs
Note: The ASCII character set is different from the English
character set



Regular Expressions

The lexical structure of most programming languages can be
specified with regular expressions.

Languages are sets of strings - we need some notation for
specifying which sets we want, that is, which strings are in the
set.

A regular expression (RE) is a notation for a regular language

If A is a regular expression, then we write L(A) to refer to the
language denoted by A.



Fundamental Regular Expressions

A L(A) Notes

a {a} singleton set for each symbol ’a’ in the alphabet Σ
ε {ε} empty string
∅ { } empty language

These are the basic building blocks of regular expressions.



Operations on Regular Expressions

A L(A) Notes

rs L(r)L(s) concatenation – r followed by s
r |s L(r) ∪ L(s) combination (union) – r or s
r∗ L(r)∗ zero or more occurrences of r (Kleene closure)

Precedence: ∗ (highest), concatenation, | (lowest)

Parenthesis can be used to group REs as needed

We abbreviate ’i’ ’f’ as ’if’ (concatenation)



Examples

L(if | then | else) = {“if”, “then”, “else”}
L((0 | 1) (0 | 1)) = {“00”, “01”, “10”, “11”}
L(0*) = {“”, “0”, “00”, “000”, . . . }
L((1|0)(1|0)*) = set of binary numbers with possible leading
zeros



Abbreviations

Abbreviation Meaning Notes

r+ (rr∗) one or more occurrences
r? (r |ε) zero or one occurrence
[a− z ] (a|b| . . . |z) one character in given range
[abxyz ] (a|b|x |y |z) one of the given characters

[ˆabc] [abc] any character except the given characters

The basic operations generate all possible regular expressions,
but common abbreviations are used for convenience.



Regular Languages and Finite Automata

Result from formal language theory: regular expressions and
finite automata both define the class of regular languages

Thus, lexical analysis uses:

Regular expressions for specification
Finite automata for implementation (automatic generation of
lexical analyzers)



Finite Automata

A finite automata is a recognizer for the set of strings of a
regular language

A finite automaton consists of:

A finite input alphabet Σ
A set of states S
A start state n
A set of accepting states F ⊆ S
A set of transitions in S → S (mappings from states to states)



Finite Automata

Transition notation
s1 → a s2
is read: in state s1 on input a go to state s2

Each transition “consumes” a character from the input

At the end of input (or no transition possible)

If in accepting state, accept (s ∈ L(R))
Otherwise, reject (s /∈ L(R))



Finite Automata State Graphs

A state:

A start state:

start

An accepting state:

A transition:

a



A Simple Example

A finite automaton that accepts only “1”;

start

1



Another Simple Example

A finite automaton that accepting any number of 1s followed
by a single 0

Alphabet: {0, 1}

start

1

0



Another Example

Alphabet: {0, 1}

start

1

0

1

0

0

1



Epsilon Transitions

Epsilon transitions:

A B

ε

The automaton can move from state A to state B without
consuming input



Deterministic and Non-Deterministic Automata

Deterministic Finite Automata (DFA)

One transition per input per state
No epsilon transitions

Non-deterministic Finite Automata (NFA)

Can have multiple transitions for one input in a given state
Can have epsilon transitions

Finite automata have finite memory – only enough to encode
the current state



Execution of Finite Automata

A DFA can take only one path through the state graph

Completely determined by input

NFAs can choose:

whether to make epsilon transitions
which of multiple transitions for a single input to take



Acceptance of NFAs

An NFA can get into multiple states

start

1

0

0 1

An NFA accepts an input if it can get in a final state

Exampe input: 1 0 1



NFA versus DFA

NFAs and DFAs recognize the same set of languages (regular
languages)

DFAs are easier to implement

A DFA can be exponentially larger than an equivalent NFA



NFA versus DFA

For a given language the NFA can be simpler than the DFA

NFA:

start

1

0

0 0

DFA:

start

1

0

1

0

0

1



Regular Expressions to Finite Automata

The implementation of a lexical specification as a finite
automata has the following transformations:

1 Lexical specification
2 Regular expressions
3 NFA
4 DFA
5 Table driven implementation of DFA



Regular Expressions to NFA

We can define an NFA for each basic regular expression and
than connect the NFAs together based on the operators

Basic regular expressions

ε transition

start
ε

Input charater ‘0’

start
0



Regular Expressions to NFA

AB: make an ε transition from the accepting state of A to
start state of B

Astart B
ε

A|B: create a new start state and add ε transitions from the
new start state to the start states of A and B, then create a
new accepting state and add ε transitions from the accepting
states of A and B to the new accepting state

start

A

B

ε

ε

ε

ε



Regular Expressions to NFA

A∗: create a new start state and accepting state and add an ε
transitions: from the new start state to the start state of A,
from the accepting state of A to the new start state, and from
the new start state to the new accepting state.

start A
ε
ε

ε



Regular Expressions to NFA Example

Consider the regular expression: (1|0)*1
The NFA is

Astart B

C

D

E

F

G H I J
ε

ε

ε

1

0

ε

ε

ε

ε

ε 1



NFA to DFA (The Trick)

Simulate the NFA

Each state of the DFA is a non-empty subset of states of the
NFA

The start state is the set of NFA states reachable through
epsilon transitions from the NFA start state

Add a transition S →a S ′ to the DFA if and only if S ′ is the
set of NFA states reachable from any state in S after seeing
the input a (considering epsilon transitions as well)



NFA to DFA Remark

An NFA may be in many states at any time

If there are N states, the NFA must be in some subset of
those N states

There are 2N − 1 possible subsets (finitely many)



NFA to DFA Example

Astart B

C

D

E

F

G H I J
ε

ε

ε

1

0

ε

ε

ε

ε

ε 1

ABCDHIstart FGABCDHI EJGABCDHI
0

1

0

1

1

0



Implementation

A DFA can be implemented by a 2D table T

One dimension is “states”
The other dimension is “input symbols”
For every transition Si →a Sk define T [i , a] = k

DFA “execution”

If in state Si and input a, then read T [i , a]k and skip to state
Sk
This is efficient



Example: Table Implementation of a DFA

Sstart T U
0

1

0

1

1

0

0 1

S T U

T T U

U T U



Implementation Continued

The NFA to DFA conversion is the core operation of lexical
analysis tools such as lex

But, DFAs can be huge

In practice, lex-like tools trade off speed for space in the
choice of NFA and DFA representations



Theory versus Practice

DFAs recognize lexemes. A lexer must return a type of
acceptance (token type) rather than simply an accept/reject
indication

DFAs consume the complete string and accept or reject it. A
lexer must find the end of the lexeme in the input stream and
then find the next one, etc.


