CSC 310 - Programming Languages

Regular Languages

Lexical Analysis

m The goal of lexical analysis is to partition an input string into
substrings where each substring is a token.

m Example:
if (i == j)
z = 0;
else
z = 1;

is a string of characters:
if (i == j)\n\tz = 0;else\n\tz = 1;

m A lexical analyzer is called a lexer or a scanner

Tokens

m A token corresponds to a set of strings

m These sets depend on the programming language

m Examples:
m ldentifiers: strings of letters or digits starting with a digit
m Integer: a non-empty string of digits
m Keyword (reserved word): “if", “else”, ...
m Whitespace: a non-empty sequence of spaces, newlines, and
tabs

What are Tokens used for?

Classify program substrings according to role
The output of lexical analysis is a stream of tokens
The input to the parser is a stream of tokens

The parser relies on token distinctions, for example, an
identifier is treated differently than a keyword

Regular Languages

m There are several formalisms for specifying tokens
m Regular languages are the most popular

m Simple and useful theory
m Easy to understand
m Efficient implementations

Languages

m Definition. Let ¥ be a set of characters. A language over
is a set of strings of characters drawn from X. ¥ is called the
alphabet.

Examples of Languages

m Natural language

m Alphabet: English characters

m Language: English sentences

m Note: not every string of English characters is an English
sentence

m Programming language

m Alphabet: ASCII

m Language: C programs

m Note: The ASCII character set is different from the English
character set

Regular Expressions

m The lexical structure of most programming languages can be
specified with regular expressions.

m Languages are sets of strings - we need some notation for
specifying which sets we want, that is, which strings are in the
set.

m A regular expression (RE) is a notation for a regular language

m If Ais a regular expression, then we write L(A) to refer to the
language denoted by A.

Fundamental Regular Expressions

L(A) | Notes

{a} | singleton set for each symbol 'a’ in the alphabet ¥
{€e} | empty string
{} | empty language

.®(T\Q))>

These are the basic building blocks of regular expressions.

Operations on Regular Expressions

A | L(A) Notes

rs | L(r)L(s concatenation — r followed by s

rls | L(r)UL(s) | combination (union) —r or s

r+ | L(r)x zero or more occurrences of r (Kleene closure)

m Precedence: * (highest), concatenation, | (lowest)
m Parenthesis can be used to group REs as needed

m We abbreviate 'i' 'f’ as 'if' (concatenation)

Examples

L(if | then | else) = {“if", “then”, “else” }
L((0|1)(0]|1))={"00", “01", “10", "11"}

L(
L
zero

0*
(

)={"","0", “00", “000", ...}
0)(1]0)*) = set of binary numbers with possible leading

Abbreviations

Abbreviation | Meaning Notes

r+ (rrx) one or more occurrences

r? (rle) zero or one occurrence

[a—z] (alb|...|z) | one character in given range

[abxyz] (alb|x|y|z) | one of the given characters

["abc] [abc] any character except the given characters

m The basic operations generate all possible regular expressions,
but common abbreviations are used for convenience.

Regular Languages and Finite Automata

m Result from formal language theory: regular expressions and
finite automata both define the class of regular languages
m Thus, lexical analysis uses:

m Regular expressions for specification
m Finite automata for implementation (automatic generation of
lexical analyzers)

Finite Automata

m A finite automata is a recognizer for the set of strings of a
regular language
m A finite automaton consists of:
m A finite input alphabet X
A set of states S
A start state n
A set of accepting states F C S
A set of transitions in S — S (mappings from states to states)

Finite Automata

m Transition notation

S1 — a So

is read: in state s; on input a go to state s
m Each transition “consumes’ a character from the input
m At the end of input (or no transition possible)

m If in accepting state, accept (s € L(R))
m Otherwise, reject (s ¢ L(R))

Finite Automata State Graphs

m A state:

O

m A start state:

start @

m An accepting state:

O

m A transition:

a

OR®

A Simple Example

m A finite automaton that accepts only “1";

1

Another Simple Example

m A finite automaton that accepting any number of 1s followed
by a single 0
m Alphabet: {0,1}

1

start

Another Example

m Alphabet: {0,1}

Epsilon Transitions

m Epsilon transitions:

€

m The automaton can move from state A to state B without
consuming input

Deterministic and Non-Deterministic Automata

m Deterministic Finite Automata (DFA)
m One transition per input per state
m No epsilon transitions
m Non-deterministic Finite Automata (NFA)
m Can have multiple transitions for one input in a given state
m Can have epsilon transitions
m Finite automata have finite memory — only enough to encode
the current state

Execution of Finite Automata

m A DFA can take only one path through the state graph
m Completely determined by input
m NFAs can choose:

m whether to make epsilon transitions
m which of multiple transitions for a single input to take

Acceptance of NFAs

m An NFA can get into multiple states
1

start

0

m An NFA accepts an input if it can get in a final state

m Exampe input: 101

NFA versus DFA

m NFAs and DFAs recognize the same set of languages (regular
languages)
m DFAs are easier to implement

m A DFA can be exponentially larger than an equivalent NFA

NFA versus DFA

m For a given language the NFA can be simpler than the DFA

m NFA:

start

m DFA:

Regular Expressions to Finite Automata

m The implementation of a lexical specification as a finite
automata has the following transformations:
Lexical specification
Regular expressions
NFA
DFA
Table driven implementation of DFA

Regular Expressions to NFA

m We can define an NFA for each basic regular expression and
than connect the NFAs together based on the operators
m Basic regular expressions
m ¢ transition

€

m Input charater ‘0’

0

Regular Expressions to NFA

m AB: make an ¢ transition from the accepting state of A to
start state of B

€
start °

m A|B: create a new start state and add e transitions from the
new start state to the start states of A and B, then create a
new accepting state and add e transitions from the accepting
states of A and B to the new accepting state

Regular Expressions to NFA

m Ax: create a new start state and accepting state and add an ¢
transitions: from the new start state to the start state of A,
from the accepting state of A to the new start state, and from
the new start state to the new accepting state.

€

tart <
star c

Regular Expressions to NFA Example

m Consider the regular expression: (1]0)*1
m The NFA is

NFA to DFA (The Trick)

Simulate the NFA

Each state of the DFA is a non-empty subset of states of the
NFA

The start state is the set of NFA states reachable through
epsilon transitions from the NFA start state

Add a transition S —2 S’ to the DFA if and only if S’ is the

set of NFA states reachable from any state in S after seeing
the input a (considering epsilon transitions as well)

NFA to DFA Remark

m An NFA may be in many states at any time

m If there are N states, the NFA must be in some subset of
those N states

m There are 2V — 1 possible subsets (finitely many)

NFA to DFA Example

Implementation

m A DFA can be implemented by a 2D table T
m One dimension is “states”
m The other dimension is “input symbols”
m For every transition S; —2 Sy define T[i,a] = k
m DFA “execution”
m If in state S; and input a, then read T/, alk and skip to state
Sk
m This is efficient

Example: Table Implementation of a DFA

c|-|w
o
c|cici-

Implementation Continued

m The NFA to DFA conversion is the core operation of lexical
analysis tools such as lex

m But, DFAs can be huge

m In practice, lex-like tools trade off speed for space in the
choice of NFA and DFA representations

Theory versus Practice

m DFAs recognize lexemes. A lexer must return a type of
acceptance (token type) rather than simply an accept/reject
indication

m DFAs consume the complete string and accept or reject it. A
lexer must find the end of the lexeme in the input stream and
then find the next one, etc.

