
CSC 526, Spring 2020, Assignment 4

Purpose: Booleans and Conditionals

Due: 11:59pm, Wednesday, February 26, 2020

Get the assignment code

These instructions assume that your course git repository is set up. Change into your course repository
directory and enter the following commands.

git fetch assignments

git checkout assignments/master -- assignment4

git add assignment4

git commit -a

This will copy the assignment4 directory into your working directory, start tracking the files in the
assignment4 directory, and commit those files to your local git repository.

Assignment Description

The purpose of this assignment is to augment the language with a boolean type and conditional
expressions.

Syntax

<program > :=

| (<expr >)

<expr > :=

| <integer >

| <identifier >

| true

| false

| (let (<bindings >) <expr >)

| (if <expr > <expr > <expr >)

| (add1 <expr >)

| (sub1 <expr >)

| (+ <expr > <expr >)

| (- <expr > <expr >)

| (* <expr > <expr >)

| (< <expr > <expr >)

| (> <expr > <expr >)

| (== <expr > <expr >)

<bindings > :=

| (<identifier > <expr >)

| (<identifier > <expr >) <bindings >

Representation of Values

1

The representation of values requires a definition. We will use the following representations to keep
track of type information at runtime:

• true will be represented as the constant 0x0000000000000006

• false will be represented as the constant 0x0000000000000002

• numbers will be represented with a 1 in the rightmost bit, with the actual two’s complement
value shifted to the left by one.

Optional error handling cases:

• Unable to parse non-representable integer literal error: A literal integer in the source program,
say x, is outside the range −262 to 262−1 (the range of 63-bit signed two’s complement integers),
should output “Non-representable integer x”.

Note: the next assignment will perform runtime type checking, so you do not need to worry about
that for this assignment.

New Assembly Instructions

The assembly instructions that you need for this assignment are:

• label: – create a location that can be jumped to with jmp, jne, and other jump commands

• cmp <arg2> <arg1> – compares the two arguments for equality. This sets the condition code
in the machine to track if the arguments were equal, or if the left was greater than or less than
the right. This information is used by conditional jump instructions.

• jne <label> – If the condition code says that the last comparison (cmp) was given equal ar-
guments, then do nothing. Otherwise, immediately start executing instructions from the given
label.

• je <label> – If the condition code says that the last comparison (cmp) was given non-equal
arguments, then do nothing. Otherwise, immediately start executing instructions from the given
label.

• jmp <label> – Unconditionally start executing instructions from the given label.

• jl <label> – Jump if the last comparison said the first value was less than the second. Other-
wise, do nothing.

• jg <label> – Jump if the last comparison said the first value was greter than the second.
Otherwise, do nothing.

• jo <label> – Jump if the last operation set the overflow condition code. Otherwise, do nothing.

• jno <label> – Jump if the last operation din not set the overflow condition code. Otherwise,
do nothing.

2

Code Generation for If Expressions

When generating code for an if expression, we need to execute exactly one of the branches. A typical
structure for doing this is to have two labels: one for the else case and one for the end of the if
expression. The shape of the generated code may look like:

cmp $rax , 0

je else_branch

; commands for then branch

jmp end_of_if

else_branch:

; commands for else branch

end_of_if:

Note that if we did not put the jmp end of if after the commands for the then branch, control would
continue and evaluate the else branch as well.

When creating labels, we cannot repeatedly use the same label names. So, we need a way to generate
new label names that will not conflict with existing label names. One way to do this is to make a
function that takes a string and appends the value of a counter to it, which is increased during each
call. This will work provided that the base strings passed to the function do not have numbers at the
end. Using this idea, the example code from before might look like:

cmp $rax , 0

je else_branch1

; commands for then branch

jmp end_of_if2

else_branch1:

; commands for else branch

end_of_if2:

Turning in the Assignment

To turn in the assignment execute the following git commands from within your repository:

git add <file >

git commit -a

git push origin master

where a git add <file> command is needed for every file that is required for building the assignment
executable. Failure to add any required files will result in a failing grade for the

3

