CSC 526, Spring 2020, Assignment 5

Purpose: Runtime checks and builtin funcitons

Due: 11:59pm, Wednesday, March 18, 2020

Get the assignment code

These instructions assume that your course git repository is set up. Change into your course repository
directory and enter the following commands.

git fetch assignments

git checkout assignments/master -- assignmentb
git add assignmentb

git commit -a

This will copy the assignment5 directory into your working directory, start tracking the files in the
assignmentb directory, and commit those files to your local git repository

Assignment Description

The purpose of this assignment is to augment the previous assignment with runtime error checking
and a single command line argument.

Syntax

<program> :=
| (<expr>)

<expr> :=
| <integer>
| <identifier>
| true
| false
| (let (<bindings>) <expr>)
| (if <expr> <expr> <expr>)
| (addl <expr>)
| (subl <expr>)
| (+ <expr> <expr>)
| (- <expr> <expr>)
| (% <expr> <expr>)
| (< <expr> <expr>)
| (> <expr> <expr>)
| (== <expr> <expr>)
| (is-int <expr>)
| (is-bool <expr>)
| (print <expr>)



<bindings> :=
| (<identifier> <expr>)
| (<identifier> <expr>) <bindings>

Runtime error checking

You must implement runtime error checking. To signal an error the generated assembly must call the
error function defined in runtime.c with the appropriate error code. The errors that you need to
check are:

e The operators -, +, *, < and > should signal an error if the operands do not evaluate to
numbers.

e The add1 and subl should signal an error if the argument does not evaluate to an integer
e The if expression should signal an error if the conditional does not evaluate to a boolean.

e (Optional) the operators -, + and * should signal an error if the result overflows and falls
outside the range representable in 63 bits.

Handling Input

You will implement a pre-defined variable called input that a user can provide on the command line.
The value of input can be an integer, true, or false. If no value is provided, the default value of input
should be false.

The input value is parsed in runtime. c and passed to the code_entry_point as a function argument.
In x86-64, this means that the value is passed in the rdi register. To make the input variable
accessible in the program, it needs to be placed on stack. One way to do this is to move the value to
the first available stack location and add the name input to the initial environment.

Builtin Functions

There are three builtin functions added to the language: print, is-bool and is-int. The print
function should call the print function defined in runtime.c with a single argument. The is-bool
and is-int functions test whether an expression evaluates to a boolean or integer respectively and
returns a boolean value.

Assembly instructions

The assembly instructions that you need for this assignment are:

e callq <label> — push the next code location onto the stack (the return pointer) and perform
an unconditional jump to the provided label.



Turning in the Assignment

To turn in the assignment execute the following git commands from within your repository:
git add <file>

git commit -a

git push origin master

where a git add <file> command is needed for every file that is required for building the assignment
executable. Failure to add any required files will result in a failing grade for the



