
CSC 425 - Principles of Compiler Design I

Abstract Syntax Trees

Review of Parsing

Given a language L(G), a parser consumes a sequence of
tokens s and produces a parse tree

Issues:

How do we recognize that s ∈ L(G)?
A parse tree of s describes how s ∈ L(G)
Ambiguity: more than one parse tree for some string s
Error: no parse tree for some string s
How do we construct the parse tree?

Abstract Syntax Trees

So far, a parser traces the derivation of a sequence of tokens

The rest of the compiler needs a structural representation of
the program

Abstract syntax trees (ASTs) are like parse trees, but ignore
some details

Abstract Syntax Trees

Consider the grammar

E → int|(E)|E + E

and the string

5 + (2 + 3)

After lexical analysis (a list of tokens)

int(5), plus, lparen, int(2), plus, int(3)

During parsing, we build a parse tree . . .

Example of Parse Tree

Traces the operation of the parser

Captures the nesting structure

But has too much info, for example parentheses

E

E

id(5)

+ E

(E

E

id(2)

+ E

id(3)

)

Example of AST

Also captures the nesting structure

But abstracts from the concrete syntax making it more
compact and easier to use

An important data structure in a compiler

+

id(5) +

id(2) id(3)

Semantic Actions

Each grammar symbol may have attributes

An attribute is a property of a programming language construct
For terminal symbols attributes can be calculated by the lexer

Each production may have an action

Written as: X → Y1 . . .Y2{action}
That can refer to or compute symbol attributes

This is what we will use to construct ASTs

Semantic Actions: Example

Consider the grammar

E → int|(E)|E + E

For each symbol X define an attribute X .val

For terminals, val is the associated lexeme
For non-terminals, val is the expression’s value

We annotate the grammar with actions:

E → int {E .val = int.val}
| (E1) {E .val = E1.val}
| E1 + E2 {E .val = E1.val + E2.val}

Semantic Actions: Example Continued

String: 5 + (2 + 3)

Tokens: int(5), plus, lparen, int(2), plus, int(3)

Productions Equations
E → E1 + E2 E .val = E1.val + E2.val
E1 → int(5) E1.val = int(5).val = 5
E2 → (E3) E2.val = E3.val
E3 → E4 + E5 E3.val = E4.val + E5.val
E4 → int(2) E4.val = int(2).val = 2
E5 → int(3) E5.val = int(3).val = 3

Semantic Actions: Dependencies

Semantic actions specify a system of equations, but the order
of executing the actions is not specified

Example:

E3.val = E4.val + E5.val

Must compute E4.val and E5.val before E3.val
We say that E3.val depends on E4.val and E5.val

The parser must find the order of evaluation

Evaluating Attributes

An attribute must be computed after all its successors in the
dependency graph have been computed

Such an order exists when there are no cycles

In the previous example, attributes can be computed
bottom-up

Types of Attributes

Synthesized attributes

Calculated from attributes of descendants in the parse tree
E .val is a synthesized attribute
Can always be calculated in a bottom-up order

Grammars with only synthesized attributes are called
S-attributed grammars

Inherited attributes

Calculated from attributes of the parent node(s) and/or
siblings in the parse tree

Example: Line Calculator

Each line contains an expression

E → int | E + E

Each line is terminated with the = sign

L → E = | + E =

In the second form, the value of evaluating the previous line is
used as a starting value

A program is a sequence of lines

P → ε | PL

Attributes for the Line Calculator

Each E has a synthesized attribute val

Each L has a synthesized attribute val

L → E = {L.val = E .val}
| + E = {L.val = E .val + L.prev}

We need the value of the previous line

We use an inherited attribute L.prev

Attributes for the Line Calculator

Each P has a synthesized attribute val

P → ε {P.val = 0}
| P1L {P.val = L.val ;

L.prev = P1.val}

Each L has an inherited attribute prev

L.prev is inherited from sibling P1.val

Semantic Actions: Notes

Semantic actions can be used to build ASTs

And many other things, such as, type checking and code
generation

This process is called syntax-directed translation – a
substantial generalization over context-free grammars

Constructing an AST

We first define the AST data type

Consider an abstract tree type with two constructors:

mkleaf(n)
mkplus(left tree, right tree)

Constructing a Parse Tree

We define a synthesized attribute ast

Values of ast values are ASTs
We assume that int.lexval is the value of the integer lexeme
Computed using semantic actions

E → int {E .ast = makeleaf (int.val)}
| (E1) {E .ast = E1.ast}
| E1 + E2 {E .ast = mkplus(E1.ast,E2.ast)}

Parse Tree Example

Consider the string: 5 + (2 + 3)

A bottom-up evaluation of the ast attribute:

E .ast = mkplus(mkleaf (5)

mkplus(mkleaf (2),mkleaf (3)))

plus

5 plus

2 3

Review of Abstract Syntax Trees

We can specify language syntax using a context-free grammar

A parser will answer whether s ∈ L(G)

. . . and will build a parse tree

. . . which we convert to an AST

. . . and pass on to the rest of the compiler

