
CSC 425 - Principles of Compiler Design I

Code Generation



Outline

Stack machines

Abstract assembly code

A stack machine implementation example



Stack Machines

A simple evaluation model

No variables or registers

A stack of values for intermediate results

Each instruction:

Takes its operands from the top of the stack
Removes those operands from the stack
Computes the required operation on them
Pushes the result to the stack



Example of a Stack Machine Program

Consider two instructions:

push i – place the integer i on top of the stack
add – pop the topmost two elements, add them and put the
result back on the stack

Example program to compute 7 + 5

push 7

push 5

add



Why Use a Stack Machine?

Each operation takes operands from the same place and puts
results in the same place

This means a uniform compilation scheme

And therefore a simpler compiler



Why Use a Stack Machine?

Location of the operands is implicit; always on top of the stack

No need to specify operands explicitly

No need to specify the location of the result

Instruction encoding is more compact than instructions with
registers

Many bytecode interpreters use a stack machine model, for
example, Java and Python



Optimizing the Stack Machine

The add instruction does three memory operations:

Two read operations and one write operation
The top of the stack is frequently accessed

Idea: keep the top of the stack in a dedicated register (called
the “accumulator”)

The add instruction is now

acc := acc + top

which is only one memory operation



Stack Machine with Accumulator: Invariants

The result of computing an expression is always placed in the
accumulator

For an operation op(e1, . . . , en), compute each ei and then
push the accumulator (the result of evaluating ei ) on the stack

After the operation, pop n − 1 values

After computing an expression, the stack is as before



Stack Machine with Accumulator: Example

Compute 3 + (7 + 5) using an accumulator:

Code Accumulator Stack
acc := 3 3 〈init〉
push acc 3 3, 〈init〉
acc := 7 7 3, 〈init〉
push acc 7 7, 3, 〈init〉
acc := 5 5 7, 3, 〈init〉
acc := acc + top 12 7, 3, 〈init〉
pop 12 3, 〈init〉
acc := acc + top 15 3, 〈init〉
pop 15 〈init〉



From Stack Machines to Three-address Code

The compiler generates code for a stack machine with an
accumulator

Here we use an abstract RISC assembly language for simplicity

The generated assembly code simulates the stack machine
instructions with instructions and registers



Simulating a Stack Machine with Assembly

The accumulator is kept in a register, we will call it acc

The stack is kept in memory

The stack grows towards lower addresses

The address of the next location on the stack is kept in a
register, we will call it sp for stack pointer

Memory is accessed with load and store instructions

Assume a machine word is 32-bits

Assume an arbitrary number of registers named t1, . . ., tn



Sample Instructions

Load word: load a 32-bit word from address register1 + offset
into register2

lw r1 offset(r2)

Store word: store a 32-bit word in register1 at address
register2 + offset

sw r1 offset(r2)

Load immediate value

li reg imm

Add register2 and register3 and store the result in register1

add r1 r2 r3



Example

The stack machine code for 7 + 5:

acc := 7 li acc 7

push acc sw acc 0(sp)

li t1 -4

add sp sp t1

acc := 5 li acc 5

acc := acc + top lw t1 4(sp)

add acc acc t1

pop li t1 4

add sp sp t1



A Small Language

We will generalize the previous example to a simple language;
a language with only integers and integer operations
Grammar

Program→ FunctionProgram

| Function

Function→ id(Args) begin E end

Args → id ,Args

| id

E → int

| id

| if E1 = E2 then E3 else E4

| if E1 + E2

| if E1 − E2

| id(E1, . . . ,En)



A Small Language

The first function definition f is the “main” function

Running the program on input i means computing f (i)

Example program: Fibonacci numbers:

fib(x)

begin

if x = 1 then 0 else

if x = 2 then 1 else fib(x-1) + fib(x-2)

end



Code Generation Strategy

For each expression e we generate assembly code that:

Computes the value of e in acc

Preserves sp and the contents of the stack

We define a recursive code generation function cgen(e) whose
result is the code generated for e



Code Generation for Constants

The code to evaluate an integer constant simply copies it into
the accumulator:

cgen(int) = li acc int

Note that this also preserves the stack, as required



Code Generation for Addition

cgen(e1 + e2) =
cgen(e1) ; acc := the value e1
sw acc 0(sp) ; push that value on the stack
li t1 -4

add sp sp t1

cgen(e2) ; acc := the value of e2
lw t1 4(sp) ; retreive the value of e1
add acc t1 acc ; perform the addition
li t1 4 ; pop the stack
add sp sp t1



Code Generation Notes

The code for e1 + e2 is a template with “holes” for the code
that evaluates e1 and e2

Stack machine code generation is recursive

The code for e1 + e2 consists of code for e1 and e2 glued
together

Code generation can be written as a recursive descent of the
AST (at least for arithmetic expressions)



Code Generation for Subtraction

New instruction: subtract register2 and register3 and store the
result in register1

sub r1 r2 r3

cgen(e1 − e2) =
cgen(e1) ; acc := the value e1
sw acc 0(sp) ; push that value on the stack
li t1 -4

add sp sp t1

cgen(e2) ; acc := the value of e2
lw t1 4(sp) ; retreive the value of e1
sub acc t1 acc ; perform the subtraction
li t1 4 ; pop the stack
add sp sp t1



Code Generation for Conditionals

We need flow control instructions and labels

A label is a symbolic name that indicates a point in the code
that can be jumped to

The code for e1 + e2 consists of code for e1 and e2 glued
together

New instructions:

Branch to label if register1 = register2

beq r1 r2 label

Unconditional jump to label

jump label



Code Generation for If Then Else

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
sw acc 0(sp)

li t1 -4

add sp sp t1

cgen(e2)
lw t2 4(sp)

li t1 4

add sp sp t1

beq acc t2

false branch:

cgen(e4)
jump end if

true branch:

cgen(e3)
end if:



Code Generation for Functions

Code for function calls and function definitions depends on
the layout of the activation record

A simple activation record is sufficient for the example
language

The result is always in the accumulator; there is no need to
store the result in the activation record
The activation record holds the actual parameters; for
f (x1, . . . , xn) push the arguments x1, . . . , xn onto the stack

The stack machine invariants guarantee that on function exit
the stack is the same as it was before the arguments got
pushed

We need the return address

It is also convenient to have a pointer to the currect
activation; this pointer will be stored in the register fp (frame
pointer)



Layout of the Activation Record

For the example language, an activation record with the
caller’s frame pointer, the actual parameters, and the return
address is sufficient

Consider a call to f (x , y), the activation record would be:

previous AR

old frame pointer

y

x

frame pointer

stack pointer



Code Generation for a Function Call

The calling sequence is the instructions (of both caller and
callee) to set up a function invocation

New instructions:

Jump to label and save the address of the next instruction in a
special register ra (return address)

jumpal label

Jump to address in register1

jumpr r1

Copy the value of register2 to register1

move r1 r2



Code Generation for a Function Call

cgen(f (e1, . . . , en)) =
sw fp 0(sp) ; the caller saves the value of the
li t1 -4 ; frame pointer
add sp sp t1

cgen(en) ; push the actual parameters in
sw acc 0(sp) ; reverse order
li t1 -4

add sp sp t1

. . .
cgen(e1)
sw acc 0(sp)

li t1 -4

add sp sp t1

jumpal f entry ; jump and save return address in ra



Code Generation for a Function Definition

cgen(f (x1, . . . , xn) begin e end) =
f entry

move fp sp

sw acc 0(sp)

li t1 -4

add sp sp t1

cgen(e)
lw ra 4(sp)

li t1 frame size ; frame size is 4n + 8
add sp sp t1

lw fp 0(sp)

jumpr ra

The callee saves the old return address, evaluates its body,
pops the return address, pops the args, and then restores the
fram pointer



Calling Sequence: Example for f (x , y)

Before call

fp1

sp



Calling Sequence: Example for f (x , y)

fp1

y

x

On entry

fp1

sp



Calling Sequence: Example for f (x , y)

fp1

y

x

return

After body

fp2

sp



Calling Sequence: Example for f (x , y)

After call

fp1

sp



Code Generation for Variables/Parameters

Variable references are the last construct

The “variables” of a function are its parameters:

They are in the activation record
Pushed by the caller

Problem: because the stack grows when intermediate results
are saved, the variables are not at a fixed offset from sp



Code Generation for Variables/Parameters

Solution: use the frame pointer

Always points to the return address on the stack
Since it does not move, it can be used to find the variables

Let xi be the i th formal parameter of the function for which
code is being generated

cgen(xi ) = lw acc offset(fp) ; offset = 4 * i



Code Generation for Variables/Parameters

Example: for a function f (x , y) begin e end , the activation
and frame pointer are set up as follows (when evaluating e)

old frame pointer

y

x

return
frame pointer

stack pointer

y is at fp + 8

x is at fp + 4



Activation Record and Code Generation Summary

The activation record must be designed together with the
code generator

Code generation can be done by recursive traversal of the AST

Note: production compilers do different things:

emphasis is on keeping values in registers
intermediate results are laid out in the activation record, not
pushed and popped from the stack
as a result, code generation is often performed in synergy with
register allocation


