CSC 526 - Principles of Compiler Design Il

Debuggers and Profilers



Outline

m Debugging
m Signals
m How debuggers work
m Breakpoints

m Profiling

m Event-based
m Statistical



What is a Debugger?

“A software tool that is used to detect the source of program or
script errors, by performing step-by-step execution of application
code and viewing the content of code variables.”

— Microsoft Developer Network



Machine-Language Debugger

Only concerned with assembly code

Show instructions via disassembly

Inspect the values of registers, memory

Key features

Attach to process
Single-stepping
Breakpoints
Conditional breakpoints
Watchpoints



Signals

m A signal is an asynchronous notification sent to a process
about an event.
m Examples:
m User pressed Ctrl-C
m Exceptions (divide by zero, null pointer, etc.)
m From the operating system (SIGPIPE)
m A signal handler is a procedure that executes when the signal
occurs



Signal Example

#include <stdlib.h>
#tinclude <stdio.h>
#include <signal.h>

int global = 11;

void my_handler () {
printf ("In signal handler, global = %d\n", global);
exit (1);

}

int main() {
int* pointer = NULL;
signal (SIGSEGV, my_handler);
global = 33;
*pointer = 0;
global = b55;
printf ("Outside, global = %d\n", global);

— o A o o n .



Attaching a Debugger

m Requires operating system support
m There is a special system call that allows one process to act as
a debugger for a target

m Once this is done, the debugger can basically “catch signals”
delivered to the target



s W

0]

Building a Debugger

can get breakpoints and interactive debugging:
Attach to target

Set up signal handler

Add in exception causing instructions

Inspect globals, etc.



Debugger Signal Example

#include <stdlib.h>
#tinclude <stdio.h>
#include <signal.h>

#define BREAKPOINT = *(0)=0
int global = 11;

void debugger_signal_handler () {
// debugger code here
}

int main() A
signal (SIGSEGV, debugger_signal_handler);
global = 33;
BREAKPOINT;
global = b55;
printf ("Outside, global = %d\n", global);

— o A o o n .



Reality

m We are not changing the source code
m Instead, we modify the assembly

m We cannot insert instructions because labels are already set at
known constant offsets

m Instead, we can change them



Software Breakpoint Recipe

Debugger has already attached and set up its signal handler
User wants a breakpoint at instruction x.

Store the instruction at x to another location, call it old,
Replace instruction at x with ¥*0=0 (something illegal)

The signal handler replaces the instruction at x with the
stored old,.

Give the user an interactive debugging prompt.



Advanced Breakpoints

Get register and local values by walking the stack

Optimization: hardware breakpoints — a special register that
can signal an exception

Feature: conditional breakpoint — break at instruction x if
variable = value

In this case, the signal handler checks to see if
variable = value



Single-Stepping

m Debuggers allow you to advance through the code one
instruction at a time

m To implement this, put a breakpoint at the first instruction

m The “single step” or “next” interactive command is

m Put a breakpoint at the next instruction
m Resume execution



Watchpoints

m You want to know when a variable changes

m A watchpoint is like a breakpoint, but it stops execution
whenever the value at location L changes.
m Software watchpoints

m Put a breakpoint at every instruction

m Check the current value of L against a stored value
m If different, give the user a debugging prompt

m Otherwise, set the next breakpoint and continue

m Hardware watchpoints

m Special register holds L and if the value at address L changes,
then the CPU raises an exception



Source-Level Debugging

m What if we want to ...

m Put a breakpoint at a source-level location, for example, a
breakpoint at line 20 in main.c

m Single-step through source-level instructions, for example, from
line 20 to line 21 in main.c

m Inspect source-level variables, for example, my_var, not a
register

m Here we need help from the compiler



Debugging Information

m The compiler can emit tables

m Map every line in the program to the assembly instruction
range

m Map every line in the program to variables in scope and where
they are located (registers, memory)

m Setting a breakpoint is a table lookup: set a breakpoint at the
beginning of the instruction range

m Single-step is a table lookup: set next breakpoint at the end
of the instruction range + 1

m Inspecting a value is a table lookup

m The tables need to take up space in the executable



Replay Debugging

m Running and single-stepping are handy
m But, wouldn't it be nice to go back in time?

m That is, from the current breakpoint, undo instructions in
reverse order



Time Travel

m Store the state at various times
m time t = 0 at program start
m time t = 88 after 88 instructions

m When the user asks you to go back one step, then you
actually go back to the last stored state and run the program
forward again with a breakpoint

m for example, to go back from t = 150, put a breakpoint at
instruction 149 and re-run from t = 88's state

m Some debuggers have this power, for example ocamldebug



Valgrind

Valgrind is a suite of free tools for debugging and profiling

m finds memory errors, profiles cache times, call graphs, profiles
heap space

It does so via dynamic binary translation

m Basically, it is an interpreter
m There is no need to modify, recompile or relink
m Works with any language

Can attach gdb to your process, etc.

Problem: slowdown by a factor of 5x to 100x



Profiling

m A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs
m Flat profile

m computes the average call times for functions, but does not
break times down based on context

m Call-Graph profile

m computes call times for functions and also the call-chains
involved



Event-Based Profiling

m Interpreted languages provide special hooks for profiling
m Java: JVM-Profile Interface
m Python: sys.set_profile() module
m You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.



Statistical Profiling

m You can arrange for the operating system to send you a signal
for every n seconds

m In the signal handler, you determine the value of the target
program counter and append it to a file (sampling)

m Later, you use that debug information table to map the
program counter values to procedure names and then sum up
the amount of time in each procedure



Sampling Analysis

m Advantages
m Simple and cheap — the instrumentation is unlikely to disturb
the program too much
m No big slowdown

m Disadvantages:

m Can completely miss periodic behavior depending on sampling
rate

m High error rate: if a value is n times the sampling period, then
the expected error in it is y/n sampling periods



Summary

m A debugger helps detect the source of a program error by
single-stepping through the program and inspecting variable
values

m Breakpoints are the fundamental building block of debuggers;
breakpoints can be implemented with signals and special
operating system support

m A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs

m Profilers can be event-based or sample-based.



