
CSC 526 - Principles of Compiler Design II

Debuggers and Profilers



Outline

Debugging

Signals
How debuggers work
Breakpoints

Profiling

Event-based
Statistical



What is a Debugger?

“A software tool that is used to detect the source of program or
script errors, by performing step-by-step execution of application
code and viewing the content of code variables.”
– Microsoft Developer Network



Machine-Language Debugger

Only concerned with assembly code

Show instructions via disassembly

Inspect the values of registers, memory

Key features

Attach to process
Single-stepping
Breakpoints
Conditional breakpoints
Watchpoints



Signals

A signal is an asynchronous notification sent to a process
about an event.

Examples:

User pressed Ctrl-C
Exceptions (divide by zero, null pointer, etc.)
From the operating system (SIGPIPE)

A signal handler is a procedure that executes when the signal
occurs



Signal Example

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

int global = 11;

void my_handler () {

printf ("In signal handler , global = %d\n", global );

exit (1);

}

int main() {

int* pointer = NULL;

signal(SIGSEGV , my_handler );

global = 33;

*pointer = 0;

global = 55;

printf ("Outside , global = %d\n", global );

return 0;

}



Attaching a Debugger

Requires operating system support

There is a special system call that allows one process to act as
a debugger for a target

Once this is done, the debugger can basically “catch signals”
delivered to the target



Building a Debugger

We can get breakpoints and interactive debugging:

Attach to target
Set up signal handler
Add in exception causing instructions
Inspect globals, etc.



Debugger Signal Example

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

#define BREAKPOINT = *(0)=0

int global = 11;

void debugger_signal_handler () {

// debugger code here

}

int main() {

signal(SIGSEGV , debugger_signal_handler );

global = 33;

BREAKPOINT;

global = 55;

printf ("Outside , global = %d\n", global );

return 0;

}



Reality

We are not changing the source code

Instead, we modify the assembly

We cannot insert instructions because labels are already set at
known constant offsets

Instead, we can change them



Software Breakpoint Recipe

Debugger has already attached and set up its signal handler

User wants a breakpoint at instruction x .

Store the instruction at x to another location, call it oldx

Replace instruction at x with *0=0 (something illegal)

The signal handler replaces the instruction at x with the
stored oldx .

Give the user an interactive debugging prompt.



Advanced Breakpoints

Get register and local values by walking the stack

Optimization: hardware breakpoints – a special register that
can signal an exception

Feature: conditional breakpoint – break at instruction x if
variable = value

In this case, the signal handler checks to see if
variable = value



Single-Stepping

Debuggers allow you to advance through the code one
instruction at a time

To implement this, put a breakpoint at the first instruction

The “single step” or “next” interactive command is

Put a breakpoint at the next instruction
Resume execution



Watchpoints

You want to know when a variable changes

A watchpoint is like a breakpoint, but it stops execution
whenever the value at location L changes.

Software watchpoints

Put a breakpoint at every instruction
Check the current value of L against a stored value
If different, give the user a debugging prompt
Otherwise, set the next breakpoint and continue

Hardware watchpoints

Special register holds L and if the value at address L changes,
then the CPU raises an exception



Source-Level Debugging

What if we want to ...

Put a breakpoint at a source-level location, for example, a
breakpoint at line 20 in main.c

Single-step through source-level instructions, for example, from
line 20 to line 21 in main.c

Inspect source-level variables, for example, my var, not a
register

Here we need help from the compiler



Debugging Information

The compiler can emit tables

Map every line in the program to the assembly instruction
range
Map every line in the program to variables in scope and where
they are located (registers, memory)

Setting a breakpoint is a table lookup: set a breakpoint at the
beginning of the instruction range

Single-step is a table lookup: set next breakpoint at the end
of the instruction range + 1

Inspecting a value is a table lookup

The tables need to take up space in the executable



Replay Debugging

Running and single-stepping are handy

But, wouldn’t it be nice to go back in time?

That is, from the current breakpoint, undo instructions in
reverse order



Time Travel

Store the state at various times

time t = 0 at program start
time t = 88 after 88 instructions

When the user asks you to go back one step, then you
actually go back to the last stored state and run the program
forward again with a breakpoint

for example, to go back from t = 150, put a breakpoint at
instruction 149 and re-run from t = 88’s state

Some debuggers have this power, for example ocamldebug



Valgrind

Valgrind is a suite of free tools for debugging and profiling

finds memory errors, profiles cache times, call graphs, profiles
heap space

It does so via dynamic binary translation

Basically, it is an interpreter
There is no need to modify, recompile or relink
Works with any language

Can attach gdb to your process, etc.

Problem: slowdown by a factor of 5x to 100x



Profiling

A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs

Flat profile

computes the average call times for functions, but does not
break times down based on context

Call-Graph profile

computes call times for functions and also the call-chains
involved



Event-Based Profiling

Interpreted languages provide special hooks for profiling

Java: JVM-Profile Interface
Python: sys.set profile() module

You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.



Statistical Profiling

You can arrange for the operating system to send you a signal
for every n seconds

In the signal handler, you determine the value of the target
program counter and append it to a file (sampling)

Later, you use that debug information table to map the
program counter values to procedure names and then sum up
the amount of time in each procedure



Sampling Analysis

Advantages

Simple and cheap – the instrumentation is unlikely to disturb
the program too much
No big slowdown

Disadvantages:

Can completely miss periodic behavior depending on sampling
rate
High error rate: if a value is n times the sampling period, then
the expected error in it is

√
n sampling periods



Summary

A debugger helps detect the source of a program error by
single-stepping through the program and inspecting variable
values

Breakpoints are the fundamental building block of debuggers;
breakpoints can be implemented with signals and special
operating system support

A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs

Profilers can be event-based or sample-based.


