
CSC 425 - Principles of Compiler Design I

Implementation of Lexical Analysis



Outline

Specify lexical structure using regular expressions

Finite automata

Deterministic Finite Automata (DFA)
Non-deterministic Finite Automata (NFA)

Implementation of regular expressions

Regular expression → NFA → DFA → Tables



Regular Expressions in Lexical Specification

A regular expression specifies a predicate s ∈ L(R), that is, is
a string s a member of the language L(R)

Testing for set membership is not enough, we need to
partition the input into tokens

We can adapt regular expressions to meet this goal



Regular Expressions to Lexical Specification

1 Select a set of tokens

Integer, Keyword, Identifier, . . .

2 Write a regular expression (or rule) for the lexemes of each
token

Integer = [0123456789]+
Keyword = (if | else | . . .)
Identifiers: [A− Za− z ] ( [A− Za− z ] | [0123456789] )∗



Regular Expressions to Lexical Specification

3 Construct a regular expression that matches all lexemes for all
tokens

R = Integer | Keyword | Identifier | . . .
R = R1 | R2 | R3 | . . .

If s ∈ L(R) then s is a lexeme

Furthermore s ∈ L(Ri ) for some i
This i determines the token that is reported



Regular Expressions to Lexical Specification

4 Let the input be x1 . . . xn
x1 . . . xn are characters
For 1 ≤ i ≤ n check if x1 . . . xi ∈ L(R)
If so, it must be that x1 . . . xi ∈ L(Rj) for some j
Otherwise, s /∈ L(R)

5 Remove x1 . . . xi from the input and got to the previous step



Options for Handling Whitespace and Comments

1 We could create a token for whitespace or comments

Whitespace = ( ’ ’ | ’\n’ | ’\t’ )+
Comment = . . .
An input of “ \t\n 42 ” is transformed to the token stream
Whitespace Integer Whitespace

2 The lexer skips whitespace and comments

This is the preferred method because whitespace and
comments are irrelevant to the parser (for most languages)
The lexer still needs to match a whitespace (or comment)
regular expression, but a token is not output



Ambiguities

How much input is used?

What if x1 . . . xi ∈ L(R) and x1 . . . xk ∈ L(R)?
Rule: choose the longest possible substring (“maximal
munch”)

Which token is used?

What if x1 . . . xi ∈ L(Rj) and x1 . . . xi ∈ L(Rk)?
Rule: choose the rule listed first (j if j < k)



Error Handling

What if no regular expression matches a prefix of the input?

Problem: the algorithm needs to terminate

Solution: write a rule matching all invalid strings and place it
at the end of the rules

Lexer tools allow you to write
R = R1 | . . . | Error
where the token Error matches if nothing else matches



Summary

Regular expressions provide a concise notation for string
patterns

Adapting regular expressions to lexical analysis requires small
extensions to resolve ambiguities and handle errors

Good algorithms are known that

Require only a single pass over the input
Require few operations per character (table lookup)



Regular Languages and Finite Automata

Result from formal language theory: regular expressions and
finite automata both define the class of regular languages

Thus, lexical analysis uses:

Regular expressions for specification
Finite automata for implementation (automatic generation of
lexical analyzers)



Finite Automata

A finite automata is a recognizer for the set of strings of a
regular language

A finite automaton consists of:

A finite input alphabet Σ
A set of states S
A start state n
A set of accepting states F ⊆ S
A set of transitions in S → S (mappings from states to states)



Finite Automata

Transition notation
s1 → a s2
is read: in state s1 on input a go to state s2

Each transition “consumes” a character from the input

At the end of input (or no transition possible)

If in accepting state, accept (s ∈ L(R))
Otherwise, reject (s /∈ L(R))



Finite Automata State Graphs

A state:

A start state:

start

An accepting state:

A transition:

a



A Simple Example

A finite automaton that accepts only “1”;

start

1



Another Simple Example

A finite automaton that accepting any number of 1s followed
by a single 0

Alphabet: {0, 1}

start

1

0



Another Example

Alphabet: {0, 1}

start

1

0

1

0

0

1



Epsilon Transitions

Epsilon transitions:

A B

ε

The automaton can move from state A to state B without
consuming input



Deterministic and Non-Deterministic Automata

Deterministic Finite Automata (DFA)

One transition per input per state
No epsilon transitions

Non-deterministic Finite Automata (NFA)

Can have multiple transitions for one input in a given state
Can have epsilon transitions

Finite automata have finite memory – only enough to encode
the current state



Execution of Finite Automata

A DFA can take only one path through the state graph

Completely determined by input

NFAs can choose:

whether to make epsilon transitions
which of multiple transitions for a single input to take



Acceptance of NFAs

An NFA can get into multiple states

start

1

0

0 1

An NFA accepts an input if it can get in a final state

Exampe input: 1 0 1



NFA versus DFA

NFAs and DFAs recognize the same set of languages (regular
languages)

DFAs are easier to implement

A DFA can be exponentially larger than an equivalent NFA



NFA versus DFA

For a given language the NFA can be simpler than the DFA

NFA:

start

1

0

0 0

DFA:

start

1

0

1

0

0

1



Regular Expressions to Finite Automata

The implementation of a lexical specification as a finite
automata has the following transformations:

1 Lexical specification
2 Regular expressions
3 NFA
4 DFA
5 Table driven implementation of DFA



Regular Expressions to NFA

We can define an NFA for each basic regular expression and
than connect the NFAs together based on the operators

Basic regular expressions

ε transition

start
ε

Input charater ‘0’

start
0



Regular Expressions to NFA

AB: make an ε transition from the accepting state of A to
start state of B

Astart B
ε

A|B: create a new start state and add ε transitions from the
new start state to the start states of A and B, then create a
new accepting state and add ε transitions from the accepting
states of A and B to the new accepting state

start

A

B

ε

ε

ε

ε



Regular Expressions to NFA

A∗: create a new start state and accepting state and add an ε
transitions: from the new start state to the start state of A,
from the accepting state of A to the new start state, and from
the new start state to the new accepting state.

start A
ε
ε

ε



Regular Expressions to NFA Example

Consider the regular expression: (1|0)*1
The NFA is

Astart B

C

D

E

F

G H I J
ε

ε

ε

1

0

ε

ε

ε

ε

ε 1



NFA to DFA (The Trick)

Simulate the NFA

Each state of the DFA is a non-empty subset of states of the
NFA

The start state is the set of NFA states reachable through
epsilon transitions from the NFA start state

Add a transition S →a S ′ to the DFA if and only if S ′ is the
set of NFA states reachable from any state in S after seeing
the input a (considering epsilon transitions as well)



NFA to DFA Remark

An NFA may be in many states at any time

If there are N states, the NFA must be in some subset of
those N states

There are 2N − 1 possible subsets (finitely many)



NFA to DFA Example

Astart B

C

D

E

F

G H I J
ε

ε

ε

1

0

ε

ε

ε

ε

ε 1

ABCDHIstart FGABCDHI EJGABCDHI
0

1

0

1

1

0



Implementation

A DFA can be implemented by a 2D table T

One dimension is “states”
The other dimension is “input symbols”
For every transition Si →a Sk define T [i , a] = k

DFA “execution”

If in state Si and input a, then read T [i , a]k and skip to state
Sk
This is efficient



Example: Table Implementation of a DFA

Sstart T U
0

1

0

1

1

0

0 1

S T U

T T U

U T U



Implementation Continued

The NFA to DFA conversion is the core operation of lexical
analysis tools such as lex

But, DFAs can be huge

In practice, lex-like tools trade off speed for space in the
choice of NFA and DFA representations



Theory versus Practice

DFAs recognize lexemes. A lexer must return a type of
acceptance (token type) rather than simply an accept/reject
indication

DFAs consume the complete string and accept or reject it. A
lexer must find the end of the lexeme in the input stream and
then find the next one, etc.


