CSC 425 - Principles of Compiler Design |

Implementation of Lexical Analysis

Outline

m Specify lexical structure using regular expressions
m Finite automata

m Deterministic Finite Automata (DFA)
m Non-deterministic Finite Automata (NFA)

m Implementation of regular expressions
m Regular expression — NFA — DFA — Tables

Regular Expressions in Lexical Specification

m A regular expression specifies a predicate s € L(R), that is, is
a string s a member of the language L(R)

m Testing for set membership is not enough, we need to
partition the input into tokens

m We can adapt regular expressions to meet this goal

Regular Expressions to Lexical Specification

Select a set of tokens
m Integer, Keyword, Identifier, ...

Write a regular expression (or rule) for the lexemes of each
token
m Integer = [0123456789]+
m Keyword = (if | else | ...)
m |dentifiers: [A— Za— z] ([A — Za — z] | [0123456789])«

Regular Expressions to Lexical Specification

Construct a regular expression that matches all lexemes for all
tokens

m R = Integer | Keyword | Identifier | ...
m R= Rl | R2 ‘ R3 | N
m If s € L(R) then s is a lexeme

m Furthermore s € L(R;) for some i
m This i determines the token that is reported

Regular Expressions to Lexical Specification

Let the input be x3 ... x,

B Xi...X, are characters
lFor1</<ncheck|fx1 L(R)

m If so, it must be that x;...x; 6 L(RJ) for some j
m Otherwise, s ¢ L(R)

Remove x; . ..x; from the input and got to the previous step

Options for Handling Whitespace and Comments

We could create a token for whitespace or comments
m Whitespace = (°> 7’ | ’\n’ | ’\t’)+
m Comment = ...

m An input of “ \t\n 42" is transformed to the token stream
Whitespace Integer Whitespace

The lexer skips whitespace and comments

m This is the preferred method because whitespace and
comments are irrelevant to the parser (for most languages)

m The lexer still needs to match a whitespace (or comment)
regular expression, but a token is not output

Ambiguities

m How much input is used?
m What if x;...x; € L(R) and x1...xx € L(R)?
m Rule: choose the longest possible substring (“maximal
munch”)

m Which token is used?

B What if x;...x € L(R;) and xq ...x; € L(R«)?
m Rule: choose the rule listed first (j if j < k)

Error Handling

What if no regular expression matches a prefix of the input?
Problem: the algorithm needs to terminate

Solution: write a rule matching all invalid strings and place it
at the end of the rules

Lexer tools allow you to write
R=Ry| ... |Error
where the token Error matches if nothing else matches

Summary

m Regular expressions provide a concise notation for string
patterns

m Adapting regular expressions to lexical analysis requires small
extensions to resolve ambiguities and handle errors

m Good algorithms are known that

m Require only a single pass over the input
m Require few operations per character (table lookup)

Regular Languages and Finite Automata

m Result from formal language theory: regular expressions and
finite automata both define the class of regular languages
m Thus, lexical analysis uses:

m Regular expressions for specification
m Finite automata for implementation (automatic generation of
lexical analyzers)

Finite Automata

m A finite automata is a recognizer for the set of strings of a
regular language
m A finite automaton consists of:

m A finite input alphabet

A set of states S

A start state n

A set of accepting states F C S

A set of transitions in S — S (mappings from states to states)

Finite Automata

m Transition notation

S1 — a S

is read: in state s; on input a go to state s
m Each transition “consumes” a character from the input
m At the end of input (or no transition possible)

m If in accepting state, accept (s € L(R))
m Otherwise, reject (s ¢ L(R))

Finite Automata State Graphs

m A state:

O

m A start state:

start @

m An accepting state:

O

m A transition:

a

OO

A Simple Example

m A finite automaton that accepts only “1";

1

Another Simple Example

m A finite automaton that accepting any number of 1s followed
by a single 0
m Alphabet: {0,1}

1

start

Another Example

m Alphabet: {0,1}

Epsilon Transitions

m Epsilon transitions:

€

m The automaton can move from state A to state B without
consuming input

Deterministic and Non-Deterministic Automata

m Deterministic Finite Automata (DFA)
m One transition per input per state
m No epsilon transitions
m Non-deterministic Finite Automata (NFA)
m Can have multiple transitions for one input in a given state
m Can have epsilon transitions
m Finite automata have finite memory — only enough to encode
the current state

Execution of Finite Automata

m A DFA can take only one path through the state graph
m Completely determined by input
m NFAs can choose:

m whether to make epsilon transitions
m which of multiple transitions for a single input to take

Acceptance of NFAs

m An NFA can get into multiple states
1

start

0

m An NFA accepts an input if it can get in a final state

m Exampe input: 101

NFA versus DFA

m NFAs and DFAs recognize the same set of languages (regular
languages)
m DFAs are easier to implement

m A DFA can be exponentially larger than an equivalent NFA

NFA versus DFA

m For a given language the NFA can be simpler than the DFA

m NFA:

start —

m DFA:

Regular Expressions to Finite Automata

m The implementation of a lexical specification as a finite
automata has the following transformations:

Lexical specification

Regular expressions

NFA

A DFA

Table driven implementation of DFA

Regular Expressions to NFA

m We can define an NFA for each basic regular expression and
than connect the NFAs together based on the operators
m Basic regular expressions
m ¢ transition

€
start m

m Input charater ‘0’

<O
start

Regular Expressions to NFA

m AB: make an ¢ transition from the accepting state of A to
start state of B

€
start °

m A|B: create a new start state and add ¢ transitions from the
new start state to the start states of A and B, then create a
new accepting state and add e transitions from the accepting
states of A and B to the new accepting state

Regular Expressions to NFA

m Ax: create a new start state and accepting state and add an ¢
transitions: from the new start state to the start state of A,
from the accepting state of A to the new start state, and from
the new start state to the new accepting state.

€

tart €
star P

Regular Expressions to NFA Example

m Consider the regular expression: (1]0)*1
m The NFA is

NFA to DFA (The Trick)

Simulate the NFA

Each state of the DFA is a non-empty subset of states of the
NFA

The start state is the set of NFA states reachable through
epsilon transitions from the NFA start state

Add a transition S —2 S’ to the DFA if and only if S’ is the
set of NFA states reachable from any state in S after seeing
the input a (considering epsilon transitions as well)

NFA to DFA Remark

m An NFA may be in many states at any time

m If there are N states, the NFA must be in some subset of
those N states

m There are 2V — 1 possible subsets (finitely many)

NFA to DFA Example

Implementation

m A DFA can be implemented by a 2D table T
m One dimension is “states”
m The other dimension is “input symbols”
m For every transition S; —2 Sy define T[i,a] = k
m DFA “execution”
m If in state S; and input a, then read T[i, alk and skip to state
Sk
m This is efficient

Example: Table Implementation of a DFA

c|-|w
o
c|cici-

Implementation Continued

m The NFA to DFA conversion is the core operation of lexical
analysis tools such as lex

m But, DFAs can be huge

m In practice, lex-like tools trade off speed for space in the
choice of NFA and DFA representations

Theory versus Practice

m DFAs recognize lexemes. A lexer must return a type of
acceptance (token type) rather than simply an accept/reject
indication

m DFAs consume the complete string and accept or reject it. A
lexer must find the end of the lexeme in the input stream and
then find the next one, etc.

