CSC 425 - Principles of Compiler Design I

Implementation of Lexical Analysis

Outline

- Specify lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFA)
 - Non-deterministic Finite Automata (NFA)
- Implementation of regular expressions
 - $\blacksquare \text{ Regular expression} \rightarrow \mathsf{NFA} \rightarrow \mathsf{DFA} \rightarrow \mathsf{Tables}$

Regular Expressions in Lexical Specification

- A regular expression specifies a predicate s ∈ L(R), that is, is a string s a member of the language L(R)
- Testing for set membership is not enough, we need to partition the input into tokens
- We can adapt regular expressions to meet this goal

Regular Expressions to Lexical Specification

1 Select a set of tokens

■ Integer, Keyword, Identifier, ...

- 2 Write a regular expression (or rule) for the lexemes of each token
 - Integer = [0123456789]+
 - Keyword = (if | else | ...)
 - Identifiers: [A Za z] ([A Za z] | [0123456789])*

Regular Expressions to Lexical Specification

- Construct a regular expression that matches all lexemes for all tokens
 - R =Integer | Keyword | Identifier | ...
 - $\blacksquare R = R_1 \mid R_2 \mid R_3 \mid \ldots$
- If $s \in L(R)$ then s is a lexeme
 - Furthermore $s \in L(R_i)$ for some i
 - This i determines the token that is reported

Regular Expressions to Lexical Specification

4 Let the input be $x_1 \dots x_n$

- $x_1 \dots x_n$ are characters
- For $1 \le i \le n$ check if $x_1 \dots x_i \in L(R)$
- If so, it must be that $x_1 \dots x_i \in L(R_j)$ for some j
- Otherwise, $s \notin L(R)$

5 Remove $x_1 \ldots x_i$ from the input and got to the previous step

Options for Handling Whitespace and Comments

1 We could create a token for whitespace or comments

- Whitespace = (' ' | '\n' | '\t')+
- Comment = . . .
- An input of "\t\n 42" is transformed to the token stream Whitespace Integer Whitespace
- 2 The lexer skips whitespace and comments
 - This is the preferred method because whitespace and comments are irrelevant to the parser (for most languages)
 - The lexer still needs to match a whitespace (or comment) regular expression, but a token is not output

Ambiguities

- How much input is used?
 - What if $x_1 \ldots x_i \in L(R)$ and $x_1 \ldots x_k \in L(R)$?
 - Rule: choose the longest possible substring ("maximal munch")
- Which token is used?
 - What if $x_1 \ldots x_i \in L(R_j)$ and $x_1 \ldots x_i \in L(R_k)$?
 - Rule: choose the rule listed first (j if j < k)

Error Handling

- What if no regular expression matches a prefix of the input?
- Problem: the algorithm needs to terminate
- Solution: write a rule matching all invalid strings and place it at the end of the rules
- Lexer tools allow you to write
 R = R₁ | ... | Error
 where the token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Adapting regular expressions to lexical analysis requires small extensions to resolve ambiguities and handle errors
- Good algorithms are known that
 - Require only a single pass over the input
 - Require few operations per character (table lookup)

Regular Languages and Finite Automata

- Result from formal language theory: regular expressions and finite automata both define the class of regular languages
- Thus, lexical analysis uses:
 - Regular expressions for specification
 - Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

- A finite automata is a *recognizer* for the set of strings of a regular language
- A finite automaton consists of:
 - A finite input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions in $S \rightarrow S$ (mappings from states to states)

Finite Automata

Transition notation

 $s_1 \rightarrow {}^a s_2$

is read: in state s_1 on input a go to state s_2

- Each transition "consumes" a character from the input
- At the end of input (or no transition possible)
 - If in accepting state, accept $(s \in L(R))$
 - Otherwise, reject $(s \notin L(R))$

Finite Automata State Graphs

A state:

A start state:

start \rightarrow

An accepting state:

A transition:

A Simple Example

■ A finite automaton that accepts only "1";

Another Simple Example

- A finite automaton that accepting any number of 1s followed by a single 0
- \blacksquare Alphabet: $\{0,1\}$

Another Example

• Alphabet: $\{0,1\}$

Epsilon Transitions

Epsilon transitions:

The automaton can move from state A to state B without consuming input

Deterministic and Non-Deterministic Automata

Deterministic Finite Automata (DFA)

- One transition per input per state
- No epsilon transitions
- Non-deterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have epsilon transitions
- Finite automata have finite memory only enough to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose:
 - whether to make epsilon transitions
 - which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- An NFA accepts an input if it can get in a final state
- Exampe input: 1 0 1

NFA versus DFA

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
- A DFA can be exponentially larger than an equivalent NFA

NFA versus DFA

For a given language the NFA can be simpler than the DFA
 NFA:

Regular Expressions to Finite Automata

- The implementation of a lexical specification as a finite automata has the following transformations:
 - 1 Lexical specification
 - 2 Regular expressions
 - 3 NFA
 - 4 DFA
 - 5 Table driven implementation of DFA

Regular Expressions to NFA

- We can define an NFA for each basic regular expression and than connect the NFAs together based on the operators
- Basic regular expressions
 - ϵ transition

Input charater '0'

Regular Expressions to NFA

■ *AB*: make an *\epsilon* transition from the accepting state of *A* to start state of *B*

 A|B: create a new start state and add ε transitions from the new start state to the start states of A and B, then create a new accepting state and add ε transitions from the accepting states of A and B to the new accepting state

Regular Expressions to NFA

■ A*: create a new start state and accepting state and add an e transitions: from the new start state to the start state of A, from the accepting state of A to the new start state, and from the new start state to the new accepting state.

Regular Expressions to NFA Example

- Consider the regular expression: (1|0)*1
- The NFA is

NFA to DFA (The Trick)

- Simulate the NFA
- Each state of the DFA is a non-empty subset of states of the NFA
- The start state is the set of NFA states reachable through epsilon transitions from the NFA start state
- Add a transition $S \rightarrow^a S'$ to the DFA if and only if S' is the set of NFA states reachable from any state in S after seeing the input *a* (considering epsilon transitions as well)

NFA to DFA Remark

- An NFA may be in many states at any time
- If there are N states, the NFA must be in some subset of those N states
- There are $2^N 1$ possible subsets (finitely many)

NFA to DFA Example

Implementation

• A DFA can be implemented by a 2D table T

- One dimension is "states"
- The other dimension is "input symbols"
- For every transition $S_i \rightarrow^a S_k$ define T[i, a] = k
- DFA "execution"
 - If in state S_i and input a, then read T[i, a]k and skip to state S_k
 - This is efficient

Example: Table Implementation of a DFA

	0	1
S	Т	U
Т	Т	U
U	Т	U

Implementation Continued

- The NFA to DFA conversion is the core operation of lexical analysis tools such as lex
- But, DFAs can be huge
- In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory versus Practice

- DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication
- DFAs consume the complete string and accept or reject it. A lexer must *find* the end of the lexeme in the input stream and then find the *next* one, etc.