CSC 425 - Principles of Compiler Design I

Implementation of Lexical Analysis

Outline

■ Specify lexical structure using regular expressions

- Finite automata
- Deterministic Finite Automata (DFA)
- Non-deterministic Finite Automata (NFA)
- Implementation of regular expressions
- Regular expression \rightarrow NFA \rightarrow DFA \rightarrow Tables

Regular Expressions in Lexical Specification

- A regular expression specifies a predicate $s \in L(R)$, that is, is a string s a member of the language $L(R)$
- Testing for set membership is not enough, we need to partition the input into tokens
■ We can adapt regular expressions to meet this goal

Regular Expressions to Lexical Specification

1 Select a set of tokens

- Integer, Keyword, Identifier, ...

2 Write a regular expression (or rule) for the lexemes of each token

- Integer $=[0123456789]+$
- Keyword = (if | else | ...)
- Identifiers: $[A-Z a-z]([A-Z a-z] \mid[0123456789]) *$

Regular Expressions to Lexical Specification

3 Construct a regular expression that matches all lexemes for all tokens

- $R=$ Integer \mid Keyword | Identifier | ...
- $R=R_{1}\left|R_{2}\right| R_{3} \mid \ldots$
- If $s \in L(R)$ then s is a lexeme
- Furthermore $s \in L\left(R_{i}\right)$ for some i
- This i determines the token that is reported

Regular Expressions to Lexical Specification

4 Let the input be $x_{1} \ldots x_{n}$

- $x_{1} \ldots x_{n}$ are characters
- For $1 \leq i \leq n$ check if $x_{1} \ldots x_{i} \in L(R)$
- If so, it must be that $x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ for some j
- Otherwise, $s \notin L(R)$

5 Remove $x_{1} \ldots x_{i}$ from the input and got to the previous step

Options for Handling Whitespace and Comments

1 We could create a token for whitespace or comments
■ Whitespace $=(, \quad|, \backslash n '| ' \backslash t ')+$
■ Comment $=\ldots$

- An input of " $\backslash \mathrm{t} \backslash \mathrm{n} 42$ " is transformed to the token stream Whitespace Integer Whitespace
2 The lexer skips whitespace and comments
- This is the preferred method because whitespace and comments are irrelevant to the parser (for most languages)
- The lexer still needs to match a whitespace (or comment) regular expression, but a token is not output

Ambiguities

■ How much input is used?

- What if $x_{1} \ldots x_{i} \in L(R)$ and $x_{1} \ldots x_{k} \in L(R)$?
- Rule: choose the longest possible substring ("maximal munch")
- Which token is used?

■ What if $x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ and $x_{1} \ldots x_{i} \in L\left(R_{k}\right)$?

- Rule: choose the rule listed first (j if $j<k$)

Error Handling

■ What if no regular expression matches a prefix of the input?
■ Problem: the algorithm needs to terminate

- Solution: write a rule matching all invalid strings and place it at the end of the rules

■ Lexer tools allow you to write
$R=R_{1}|\ldots|$ Error
where the token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Adapting regular expressions to lexical analysis requires small extensions to resolve ambiguities and handle errors
- Good algorithms are known that
- Require only a single pass over the input
- Require few operations per character (table lookup)

Regular Languages and Finite Automata

- Result from formal language theory: regular expressions and finite automata both define the class of regular languages
- Thus, lexical analysis uses:
- Regular expressions for specification
- Finite automata for implementation (automatic generation of lexical analyzers)

Finite Automata

- A finite automata is a recognizer for the set of strings of a regular language
- A finite automaton consists of:
- A finite input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
- A set of transitions in $S \rightarrow S$ (mappings from states to states)

Finite Automata

- Transition notation $s_{1} \rightarrow{ }^{a} s_{2}$
is read: in state s_{1} on input a go to state s_{2}
■ Each transition "consumes" a character from the input
- At the end of input (or no transition possible)
- If in accepting state, accept $(s \in L(R))$
- Otherwise, reject $(s \notin L(R))$

Finite Automata State Graphs

- A state:

- A start state:

- An accepting state:

- A transition:

A Simple Example

- A finite automaton that accepts only " 1 ";

Another Simple Example

- A finite automaton that accepting any number of 1 s followed by a single 0
■ Alphabet: $\{0,1\}$

Another Example

- Alphabet: $\{0,1\}$

Epsilon Transitions

- Epsilon transitions:

- The automaton can move from state A to state B without consuming input

Deterministic and Non-Deterministic Automata

■ Deterministic Finite Automata (DFA)

- One transition per input per state
- No epsilon transitions

■ Non-deterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a given state
- Can have epsilon transitions

■ Finite automata have finite memory - only enough to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
- Completely determined by input
- NFAs can choose:
- whether to make epsilon transitions
- which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states

- An NFA accepts an input if it can get in a final state

■ Exampe input: 101

NFA versus DFA

■ NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
- A DFA can be exponentially larger than an equivalent NFA

NFA versus DFA

- For a given language the NFA can be simpler than the DFA - NFA:

- DFA:

Regular Expressions to Finite Automata

- The implementation of a lexical specification as a finite automata has the following transformations:
1 Lexical specification
2 Regular expressions
3 NFA
4 DFA
5 Table driven implementation of DFA

Regular Expressions to NFA

- We can define an NFA for each basic regular expression and than connect the NFAs together based on the operators
- Basic regular expressions

■ ϵ transition

■ Input charater ' 0 '

Regular Expressions to NFA

- $A B$: make an ϵ transition from the accepting state of A to start state of B

- $A \mid B$: create a new start state and add ϵ transitions from the new start state to the start states of A and B, then create a new accepting state and add ϵ transitions from the accepting states of A and B to the new accepting state

Regular Expressions to NFA

- $A *$: create a new start state and accepting state and add an ϵ transitions: from the new start state to the start state of A, from the accepting state of A to the new start state, and from the new start state to the new accepting state.

Regular Expressions to NFA Example

- Consider the regular expression: ($1 \mid 0) * 1$
- The NFA is

NFA to DFA (The Trick)

- Simulate the NFA

■ Each state of the DFA is a non-empty subset of states of the NFA

■ The start state is the set of NFA states reachable through epsilon transitions from the NFA start state
■ Add a transition $S \rightarrow{ }^{a} S^{\prime}$ to the DFA if and only if S^{\prime} is the set of NFA states reachable from any state in S after seeing the input a (considering epsilon transitions as well)

NFA to DFA Remark

- An NFA may be in many states at any time

■ If there are N states, the NFA must be in some subset of those N states

- There are $2^{N}-1$ possible subsets (finitely many)

NFA to DFA Example

Implementation

- A DFA can be implemented by a 2D table T
- One dimension is "states"
- The other dimension is "input symbols"
- For every transition $S_{i} \rightarrow{ }^{a} S_{k}$ define $T[i, a]=k$
- DFA "execution"
- If in state S_{i} and input a, then read $T[i, a] k$ and skip to state S_{k}
- This is efficient

Example: Table Implementation of a DFA

	0	1
S	T	U
T	T	U
U	T	U

Implementation Continued

- The NFA to DFA conversion is the core operation of lexical analysis tools such as lex
- But, DFAs can be huge
- In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

Theory versus Practice

■ DFAs recognize lexemes. A lexer must return a type of acceptance (token type) rather than simply an accept/reject indication

■ DFAs consume the complete string and accept or reject it. A lexer must find the end of the lexeme in the input stream and then find the next one, etc.

