
CSC 425 - Principles of Compiler Design I

Introduction to Bottom-Up Parsing

Outline

Review LL parsing

Shift-reduce parsing

The LR parsing algorithm

Constructing LR parsing tables

Top-Down Parsing: Review

Top-down parsing expands a parse tree from the start symbol
to the leaves

Always expand the leftmost non-terminal

The leaves at any point form a string βAγ

β contains only terminals
The input string is βbδ
The prefix β matches (is valid)
The next token is b

Predictive Parsing: Review

A predictive parser is described by a table

For each non-terminal A and for each token b we specify a
production A→ α
When trying to expand A we use A→ α if b follows next

Once we have the table:

The parsing algorithm is simple and fast
No backtracking is necessary

Bottom-Up Parsing

Bottom-up parsing is more general than top-down parsing

and just as efficient
builds on ideas in top-down parsing
preferred method in practice

Also called LR parsing

L means that tokens are read left-to-right
R means that it constructs a rightmost derivation

An Introductory Example

LR parsers do not need left-factored grammars and can also
handle left-recursive grammars

Consider the following grammar:

E → E + (E) | int

This is not LL(1)

Consider the string: int + (int) + (int)

The Idea

LR parsing reduces a string to the start symbol by inverting
productions

Given a string of terminals:

1 Identify β in the string such that A→ β is a production
2 Replace β by A in the string
3 Repeat steps 1 and 2 until the string is the start symbol (or all

possibilities are exhausted)

Bottom-up Parsing Example

Consider the following grammar:

E → E + (E) | int

And input string: int + (int) + (int)

Bottom-up parse:

1 int + (int) + (int)
2 E + (int) + (int)
3 E + (E) + (int)
4 E + (int)
5 E + (E)
6 E

A rightmost derivation in reverse

Reductions

An LR parser traces a rightmost derivation in reverse

This has an interesting consequence

Let αβγ be a step of a bottom-up parse
Assume the next reduction is by using A→ β
The γ is a string of terminals
This is because αAγ → αβγ is a step in a rightmost derivation

Notation

Idea: split a string into two substrings

the right substring is the partition that has not been examined
yet
the left substring has terminals and non-terminals

The dividing point is marked by a |
Initially, all input is unexamined: |x1, x2 . . . xn

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions: shift and
reduce

Shift: move | one place to the right

E + (|int)→ E + (int|)

Reduce: apply an inverse production at the right end of the
left string

If E → E + (E) is a production, then

E + (E + (E)|)→ E + (E |)

Shift-Reduce Example

Consider the grammar: E → E + (E) | int

String Action
|int + (int) + (int)$ shift
int|+ (int) + (int)$ reduce E → int
E |+ (int) + (int)$ shift three times
E + (int|) + (int)$ reduce E → int
E + (E |) + (int)$ shift
E + (E)|+ (int)$ reduce E → E + (E)
E |+ (int)$ shift three times
E + (int|)$ reduce E → int
E + (E |)$ shift
E + (E)|$ reduce E → E + (E)
E |$ accept

The Stack

The left string can be implemented by a stack

The top of the stack is the |
Shift pushes a terminal on the stack

Reduce pops zero or more symbols off of the stack
(production right hand side) and pushes a non-terminal on the
stack (production left hand side).

Question: To Shift or Reduce

Idea: use a finite automaton (DFA) to decide when to shift or
reduce

The input is the stack
The language consists of terminals and non-terminals

We run the DFA on the stack and examine the resulting state
X and token t after |

If X has a transition labeled t then shift
If X is labeled with “A→ β on t” then reduce

LR(1) DFA Example

Transitions:

0→ 1 on int
0→ 2 on E
2→ 3 on +
3→ 4 on (
4→ 5 on int
4→ 6 on E
6→ 7 on)
6→ 8 on +
8→ 9 on (
9→ 5 on int
9→ 10 on E
10→ 8 on +
10→ 11 on)

States with actions:

1: E → int on $,+
2: accept on $
5: E → int on),+
7: E → E + (E) on $,+
11: E → E + (E) on),+

Representing the DFA

Parsers represent the DFA as a 2D table similar to
table-driven lexical analysis

Rows correspond to DFA states

Columns correspond to terminals and non-terminals

Columns are typically split into:

terminals: action table
non-terminals: goto table

Representing the DFA Example

int + () $ E

0 s1 g2

1 r(E → int) r(E → int)

2 s3 accept

3 s4

4 s5 g6

5 r(E → int) r(E → int)

6 s8 s7

7 r(E → E + (E)) r(E → E + (E))

8 s9

9 s5 g10

10 s8 s11

11 r(E → E + (E)) r(E → E + (E))

The LR Parsing Algorithm

After a shift or reduce action we rerun the DFA on the entire
stack

This is wasteful, since most of the work is repeated

For each stack element remember which state it transitions to
in the DFA

The LR parser maintains a stack

〈sym1, state1〉 . . . 〈symn, staten〉

where statek is the final state of the DFA on sym1 . . . symk

The LR Parsing Algorithm

let I = w$ be the initial input

let j = 0

let DFA state 0 be the start state

let stack = <dummy , 0>

repeat

case action[top_state(stack), I[j]] of

shift k: push <I[j++], k>

reduce X -> A:

pop |A| pairs

push <X, goto[top_state(stack), X]>

accept: halt normally

error: halt and report error

LR Parsers

Can be used to parse more grammars than LL

Most programming languages are LR

LR parsers can be described as a simple table

There are tools for building the table

Open question: how is the table constructed?

Key Issue: How is the DFA Constructed?

The stack describes the context of the parse

What non-terminal we are looking for
What production right hand side we are looking for
What we have seen so far from the right hand side

Each DFA state describes several such contexts

Example: when we are looking for non-terminal E , we might
be looking either for an int of an E + (E) right hand side

LR(0) Items

An LR(0) item is a production with a “|” somewhere on the
right hand side

The items for T → (E) are:

T → |(E)
T → (|E)
T → (E |)
T → (E)|

The only item for X → ε is X → |

LR(0) Items: Intuition

An item 〈X → α|β〉 says that

the parser is looking for an X
it has an α on top of stack
expects to finr a string derived from β next in the input

Notes

〈X → α|aβ〉 means that a should follow – then we can shift it
and still have a viable prefix
〈X → α|〉 means that we could reduce X – but this is not
always a good idea

LR(1) Items

An LR(1) item is a pair:

〈X → α|β, a〉

X → αβ is a production
a is a terminal (the lookahead terminal)
LR(1) means one lookahead terminal

〈X → α|β, a〉 describes a context of the parser

We are trying to find an X followed by an a, and
We have (at least) α already on top of the stack
Thus, we need to see a prefix derived from βa

Note

The symbol | was used before to separate the stack from the
rest of the input.

α|γ, where α is the stack and γ is the remaining string of
terminals

In items | is used to mark a prefix of a production right hand
side:

〈X → α|β, a〉

Here β might contain terminals as well

In both cases, the stack is on the left of |

Convention

We add to our grammar a fresh new start symbol S and a
production S → E where E is the old start symbol

The initial parsing context contains:

〈S → |E , $〉

Trying to find an S as a string dervied from E$
The stack is empty

LR(1) Items Continued

In context containing

〈E → E + |(E),+〉

If “(” follows then we can perform a shift to context
containing

〈E → E + (|E),+〉

In context containing

〈E → E + (E)|,+〉

We can perform a reduction with E → E + (E), but only if a
“+” follows

LR(1) Items Continued

Consider the item

〈E → E + (|E),+〉

We expect a string derived from E)+

There are two productions for E

E → int
E → E + (E)

We describe this by extending the context with two more
items:

〈E → |int,)〉
〈E → |E + (E),)〉

The Closure Operation

The operation of extending the context with items is called
the closure operation

Closure(Items) =

repeat

for each [X -> alpha | Y beta , a] in Items

for each production Y -> gamma

for each b in First(beta a)

add [Y -> | gamma , b] to Items

until Items is unchanged

Constructing the Parsing DFA (1)

Construct the start context: Closure({S → E , $})
〈S → |E , $〉
〈E → |E + (E), $〉
〈E → |int, $〉
〈E → |E + (E),+〉
〈E → |int,+〉

We abbreviate as:

〈S → |E , $〉
〈E → |E + (E), $/+〉
〈E → |int, $/+〉

Constructing the Parsing DFA (2)

A DFA state is a closed set of LR(1) items

The start state contains 〈S → |E , $〉
A state that contains 〈X → α|b〉 is labelled with “reduce with
X → α on b”

The DFA Transitions

A state “State” that contains 〈X → α|yβ, b〉 has a transition
labeled y to a state that contains the items
“Transition(State,y)” where y can be a terminal or
non-terminal

Transition(State , y) =

Items = empty set

for each [X -> alpha | y beta , a] in State

add [X -> alpha y | beta , b] to Items

return Closure(Items)

LR Parsing Tables: Notes

Parsing tables (DFA) can be constructed automatically for a
CFG

But, we still need to understand the construction to work with
parser generators

What kinds of errors can we expect?

Shift/Reduce Conflicts

If a DFA state contains both

〈X → α|aβ, b〉

and

〈Y → γ|, a〉

Then on input “a” we could either

Shift into state 〈X → αa|β, b〉
Reduce with Y → γ

This is called a shift-reduce conflict

Shift/Reduce Conflicts

Typically due to ambiguities in the grammar

Classic example: the dangling else

S → if E then S | if E then S else S | OTHER

Will have a DFA state containing

〈S → if E then S |, else〉
〈S → if E then S | else S , x〉

If else follows then we can shift or reduce

The default behavior of tools is to shift

More Shift/Reduce Conflicts

Consider the ambiguous grammar

E → E + E | E ∗ E | int

We will have the states containing

〈E → E ∗ |E ,+〉 ⇒ 〈E → E ∗ E |,+〉
〈E → |E + E ,+〉 ⇒ 〈E → E |+ E ,+〉
. . .

Again we have a shift/reduce on input +

We need to reduce (∗ binds tighter than +)
Recall solution: declare the precedence of ∗ and +

More Shift/Reduce Conflicts

In yacc we can declare precedence and associativity

%left +

%left *

Precedence of a rule equals that of its last terminal

Resolve shift/reduce conflict with a shift if:

no precedence declared for either rule or terminal
input terminal has a higher precedence than the rule
the precedences are the same and right associative

Using Precedence to Resolve Shift/Reduce Conflicts

Back to the example

〈E → E ∗ |E ,+〉 ⇒ 〈E → E ∗ E |,+〉
〈E → |E + E ,+〉 ⇒ 〈E → E |+ E ,+〉
. . .

Will choose reduce because precedence of rule E → E ∗ E is
higher than of terminal +

Using Precedence to Resolve Shift/Reduce Conflicts

Another example

〈E → E + |E ,+〉 ⇒ 〈E → E + E |,+〉
〈E → |E + E ,+〉 ⇒ 〈E → E |+ E ,+〉
. . .

Now we have a shift/reduce on input +: we choose redue
because E → E + E and + have the same precedence and +
is left associative

Precedence Declarations Revisited

The phrase precedence declaration is misleading

These declarations do not define precedence, they define
conflict resolutions

That is, they instruct shift-reduce parsers to resolve conflicts
in certain ways – that is not quite the same thing as
precedence

Reduce/Reduce Conflicts

If a DFA state contains both

〈X → α|, a〉

and

〈Y → β|, a〉

then on “a” we don not know which production to reduce

This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

Usually due to gross ambiguity in the grammar

Example:

S → ε | id | id S

There are two parse trees for the string id

This grammar is better if we rewrite it as

S → ε | id S

Using Parser Generators

A parser generator automatically contructs the parsing DFA
given a context free grammar

Use precedence declarations and default conventions to resolve
conflicts
The parser algorithm is the same for all grammars

But, most parser generators do not construct the DFA as
described before because the LR(1) parsing DFA has
thousands of states for even simple languages

LR(1) Parsing Tables are Big

But, many states are similar:

〈E → int|, $/+〉 and 〈E → int|,)/+〉

Idea: merge the DFA states whose items differ only in the
lookahead tokens

We say that that such states have the same core

In this example, we obtain

〈E → int|, $/+ /)〉

The Core of a Set of LR Items

Definition: The core of a set of LR items is the set of first
components without the lookahead terminals

Example: the core of

{〈X → α|β, b〉, 〈Y → γ|δ, d〉}

is

{X → α|β,Y → γ|δ}

LALR States

Consider for example the LR(1) states

Example: the core of

{〈X → α|, a〉, 〈Y → β|, c〉}
{〈X → α|, b〉, 〈Y → β|, d〉}

They have the same core and can be merged

The merged state contains:

{〈X → α|, a/b〉, 〈Y → β|, c/d〉}

These are called LALR(1) states

Stands for LookAhead LR
Typically 10 times fewer LALR(1) states than LR(1)

A LALR(1) DFA

Repeat until all states have a distinct core

Choose two distinct states with the same core
Merge the states by creating a new one with the union of all
the items
Point edges from the predecessors to the new state
New state points to all previous states

The LALR Parser Can Have Conflicts

Consider for example the LR(1) states

{〈X → α|, a〉, 〈Y → β|, b〉}
{〈X → α|, b〉, 〈Y → β|, a〉}

And the merged LALR(1) state

{〈X → α|, a/b〉, 〈Y → β|, a/b〉}

Has a new reduce/reduce conflict

In practice such cases are rare

LALR versus LR Parsing

LALR languages are not natural; they are an efficiency hack
on LR languages

Most reasonable programming languages has an LALR(1)
grammar

LALR(1) parsing has become a standard for programming
languages and for parser generators.

A Hierarchy of Grammar Classes

Semantic Actions in LR Parsing

We can now illustrate how semantic actions are implemented
for LR parsing

Keep attributes on the stack:

On shifting a, push the attribute for a on the stack
On reduce X → α

1 pop attributes for α
2 compute attribute for X
3 push it on the stack

Performing Semantic Actions: Example

Recall the example

E → T + E1 {E .val = T .val + E1.val}
| T {E .val = T .val}

T → int ∗ T1 {T .val = int.val + T1.val}
| int {T .val = int.val}

Consider parsing the string: 4 ∗ 9 + 6

Performing Semantic Actions: Example

Recall the example

E → T + E1 {E .val = T .val + E1.val}
| T {E .val = T .val}

T → int ∗ T1 {T .val = int.val + T1.val}
| int {T .val = int.val}

Consider parsing the string: 4 ∗ 9 + 6

Performing Semantic Actions: Example

String Action
|int ∗ int + int shift
int(4)| ∗ int + int$ shift
int(4) ∗ |int + int$ shift
int(4) ∗ int(9)|+ int$ reduce T → int
int(4) ∗ T (9)|+ int$ reduce T → int ∗ T
T (36)|+ int$ shift
T (36) + |int$ shift
T (36) + int(6)|$ reduce T → int
T (36) + T (6)|$ reduce E → T
T (36) + E (6)|$ reduce E → T + E
E (42)|$ accept

Notes on Parsing

Parsing

A solid foundation: context-free grammars
A simple parser: LL(1)
A more powerful parser: LR(1)
An efficiency hack: LALR(1)
LALR(1) parser generators

