CSC 425 - Principles of Compiler Design I

Introduction to Bottom-Up Parsing

Outline

- Review LL parsing
- Shift-reduce parsing
- The $L R$ parsing algorithm
- Constructing $L R$ parsing tables

Top-Down Parsing: Review

- Top-down parsing expands a parse tree from the start symbol to the leaves
- Always expand the leftmost non-terminal
- The leaves at any point form a string $\beta A \gamma$
- β contains only terminals
- The input string is $\beta b \delta$
- The prefix β matches (is valid)
- The next token is b

Predictive Parsing: Review

- A predictive parser is described by a table
- For each non-terminal A and for each token b we specify a production $A \rightarrow \alpha$
- When trying to expand A we use $A \rightarrow \alpha$ if b follows next

■ Once we have the table:

- The parsing algorithm is simple and fast
- No backtracking is necessary

Bottom-Up Parsing

■ Bottom-up parsing is more general than top-down parsing

- and just as efficient
- builds on ideas in top-down parsing
- preferred method in practice
- Also called $L R$ parsing
- L means that tokens are read left-to-right
- R means that it constructs a rightmost derivation

An Introductory Example

- $L R$ parsers do not need left-factored grammars and can also handle left-recursive grammars
- Consider the following grammar:

$$
E \rightarrow E+(E) \mid i n t
$$

- This is not $L L(1)$
- Consider the string: int $+(i n t)+(i n t)$

The Idea

■ $L R$ parsing reduces a string to the start symbol by inverting productions

- Given a string of terminals:

1 Identify β in the string such that $A \rightarrow \beta$ is a production
2 Replace β by A in the string
3 Repeat steps 1 and 2 until the string is the start symbol (or all possibilities are exhausted)

Bottom-up Parsing Example

■ Consider the following grammar:

$$
E \rightarrow E+(E) \mid i n t
$$

- And input string: int + (int) + (int)
- Bottom-up parse:

1 int + (int) $+(i n t)$
$2 E+(i n t)+(i n t)$
$3 E+(E)+(i n t)$
$4 E+(i n t)$
$5 E+(E)$
$6 E$

- A rightmost derivation in reverse

Reductions

- An $L R$ parser traces a rightmost derivation in reverse

■ This has an interesting consequence

- Let $\alpha \beta \gamma$ be a step of a bottom-up parse
- Assume the next reduction is by using $A \rightarrow \beta$
- The γ is a string of terminals
- This is because $\alpha A \gamma \rightarrow \alpha \beta \gamma$ is a step in a rightmost derivation

Notation

■ Idea: split a string into two substrings

- the right substring is the partition that has not been examined yet
- the left substring has terminals and non-terminals
- The dividing point is marked by a |

■ Initially, all input is unexamined: $\mid x_{1}, x_{2} \ldots x_{n}$

Shift-Reduce Parsing

- Bottom-up parsing uses only two kinds of actions: shift and reduce
■ Shift: move | one place to the right

$$
E+(\mid i n t) \rightarrow E+(i n t \mid)
$$

- Reduce: apply an inverse production at the right end of the left string
- If $E \rightarrow E+(E)$ is a production, then

$$
E+(\underline{E+(E)} \mid) \rightarrow E+(\underline{E} \mid)
$$

Shift-Reduce Example

■ Consider the grammar: $E \rightarrow E+(E) \mid$ int

String	Action
\mid int $+($ int $)+($ int $) \$$	shift
int $\mid+($ int $)+($ int $) \$$	reduce $E \rightarrow$ int
$E \mid+($ int $)+($ int $) \$$	shift three times
$E+($ int $\mid)+($ int $) \$$	reduce $E \rightarrow$ int
$E+(E \mid)+($ int $) \$$	shift
$E+(E) \mid+($ int $) \$$	reduce $E \rightarrow E+(E)$
$E \mid+($ int $) \$$	shift three times
$E+($ int $\mid) \$$	reduce $E \rightarrow$ int
$E+(E \mid) \$$	shift
$E+(E) \mid \$$	reduce $E \rightarrow E+(E)$
$E \mid \$$	accept

The Stack

- The left string can be implemented by a stack
- The top of the stack is the |

■ Shift pushes a terminal on the stack
■ Reduce pops zero or more symbols off of the stack (production right hand side) and pushes a non-terminal on the stack (production left hand side).

Question: To Shift or Reduce

- Idea: use a finite automaton (DFA) to decide when to shift or reduce

■ The input is the stack

- The language consists of terminals and non-terminals
- We run the DFA on the stack and examine the resulting state X and token t after
- If X has a transition labeled t then shift
- If X is labeled with " $A \rightarrow \beta$ on t " then reduce

$L R(1)$ DFA Example

- Transitions:
- $0 \rightarrow 1$ on int
- $0 \rightarrow 2$ on E
- $2 \rightarrow 3$ on +
- $3 \rightarrow 4$ on (
- $4 \rightarrow 5$ on int
- $4 \rightarrow 6$ on E
- $6 \rightarrow 7$ on)
- $6 \rightarrow 8$ on +
- $8 \rightarrow 9$ on (
- $9 \rightarrow 5$ on int
- $9 \rightarrow 10$ on E
- $10 \rightarrow 8$ on +
- $10 \rightarrow 11$ on)

■ States with actions:
■ 1: $E \rightarrow$ int on $\$,+$

- 2: accept on \$
- 5: $E \rightarrow$ int on $),+$
- 7: $E \rightarrow E+(E)$ on $\$,+$
- 11: $E \rightarrow E+(E)$ on $),+$

Representing the DFA

■ Parsers represent the DFA as a 2D table similar to table-driven lexical analysis

- Rows correspond to DFA states
- Columns correspond to terminals and non-terminals
- Columns are typically split into:

■ terminals: action table

- non-terminals: goto table

Representing the DFA Example

	int	+	$($	$)$	$\$$	E
0	s 1					g 2
1		$\mathrm{r}(E \rightarrow i n t)$			$\mathrm{r}(E \rightarrow i n t)$	
2		s 3				accept
3			s 4			g 6
4	s 5					
5		$\mathrm{r}(E \rightarrow i n t)$		$\mathrm{r}(E \rightarrow i n t)$		
6	s 8		s 7		$\mathrm{r}(E \rightarrow E+(E))$	
7		$\mathrm{r}(E \rightarrow E+(E))$				
8			s 9			
9	s 5					
10		s 8		s 11		
11		$\mathrm{r}(E \rightarrow E+(E))$		$\mathrm{r}(E \rightarrow E+(E))$		

The $L R$ Parsing Algorithm

- After a shift or reduce action we rerun the DFA on the entire stack
- This is wasteful, since most of the work is repeated
- For each stack element remember which state it transitions to in the DFA
- The $L R$ parser maintains a stack

$$
\left\langle\text { sym }_{1}, \text { state }_{1}\right\rangle \ldots\left\langle\text { sym }_{n}, \text { state }_{n}\right\rangle
$$

where state_{k} is the final state of the DFA on $\operatorname{sym}_{1} \ldots$ sym $_{k}$

The $L R$ Parsing Algorithm

```
let I = w$ be the initial input
let j = 0
let DFA state O be the start state
let stack = <dummy, 0>
repeat
case action[top_state(stack), I[j]] of
    shift k: push <I[j++], k>
    reduce X -> A:
    pop |A| pairs
    push <X, goto[top_state(stack), X]>
    accept: halt normally
    error: halt and report error
```


LR Parsers

- Can be used to parse more grammars than $L L$
- Most programming languages are $L R$
- $L R$ parsers can be described as a simple table
- There are tools for building the table

■ Open question: how is the table constructed?

Key Issue: How is the DFA Constructed?

- The stack describes the context of the parse
- What non-terminal we are looking for
- What production right hand side we are looking for
- What we have seen so far from the right hand side
- Each DFA state describes several such contexts
- Example: when we are looking for non-terminal E, we might be looking either for an int of an $E+(E)$ right hand side

$L R(0)$ Items

- An $L R(0)$ item is a production with a "|" somewhere on the right hand side
- The items for $T \rightarrow(E)$ are:
- $T \rightarrow \mid(E)$
- $T \rightarrow(\mid E)$
- $T \rightarrow(E \mid)$
- $T \rightarrow(E) \mid$
- The only item for $X \rightarrow \epsilon$ is $X \rightarrow \mid$

$L R(0)$ Items: Intuition

- An item $\langle X \rightarrow \alpha \mid \beta\rangle$ says that
- the parser is looking for an X
- it has an α on top of stack
- expects to finr a string derived from β next in the input
- Notes
- $\langle X \rightarrow \alpha \mid a \beta\rangle$ means that a should follow - then we can shift it and still have a viable prefix
- $\langle X \rightarrow \alpha \mid\rangle$ means that we could reduce X - but this is not always a good idea

$L R(1)$ Items

- An $L R(1)$ item is a pair:

$$
\langle X \rightarrow \alpha \mid \beta, a\rangle
$$

- $X \rightarrow \alpha \beta$ is a production
- a is a terminal (the lookahead terminal)
- $L R(1)$ means one lookahead terminal
- $\langle X \rightarrow \alpha \mid \beta, a\rangle$ describes a context of the parser
- We are trying to find an X followed by an a, and
- We have (at least) α already on top of the stack
- Thus, we need to see a prefix derived from β a

Note

■ The symbol | was used before to separate the stack from the rest of the input.

- $\alpha \mid \gamma$, where α is the stack and γ is the remaining string of terminals
- In items | is used to mark a prefix of a production right hand side:

$$
\langle X \rightarrow \alpha \mid \beta, a\rangle
$$

- Here β might contain terminals as well

■ In both cases, the stack is on the left of

Convention

- We add to our grammar a fresh new start symbol S and a production $S \rightarrow E$ where E is the old start symbol
- The initial parsing context contains:

$$
\langle S \rightarrow \mid E, \$\rangle
$$

- Trying to find an S as a string dervied from $E \$$
- The stack is empty

$L R(1)$ Items Continued

■ In context containing

$$
\langle E \rightarrow E+\mid(E),+\rangle
$$

If "(" follows then we can perform a shift to context containing

$$
\langle E \rightarrow E+(\mid E),+\rangle
$$

- In context containing

$$
\langle E \rightarrow E+(E) \mid,+\rangle
$$

We can perform a reduction with $E \rightarrow E+(E)$, but only if a " + " follows

$L R(1)$ Items Continued

■ Consider the item

$$
\langle E \rightarrow E+(\mid E),+\rangle
$$

- We expect a string derived from E)+
- There are two productions for E
- $E \rightarrow$ int
- $E \rightarrow E+(E)$
- We describe this by extending the context with two more items:
- $\langle E \rightarrow| i n t)$,
- $\langle E \rightarrow| E+(E))$,

The Closure Operation

- The operation of extending the context with items is called the closure operation

```
Closure(Items) =
    repeat
    for each [X -> alpha | Y beta, a] in Items
        for each production Y -> gamma
            for each b in First(beta a)
            add [Y -> | gamma, b] to Items
until Items is unchanged
```


Constructing the Parsing DFA (1)

- Construct the start context: Closure $(\{S \rightarrow E, \$\})$
- $\langle S \rightarrow \mid E, \\rangle
- $\langle E \rightarrow \mid E+(E), \\rangle
- $\langle E \rightarrow \mid i n t, \\rangle
- $\langle E \rightarrow \mid E+(E),+\rangle$
- $\langle E \rightarrow|$ int,+\rangle

■ We abbreviate as:

- $\langle S \rightarrow \mid E, \\rangle
- $\langle E \rightarrow \mid E+(E), \$ /+\rangle$
- $\langle E \rightarrow|$ int,$\$ /+\rangle$

Constructing the Parsing DFA (2)

- A DFA state is a closed set of $L R(1)$ items
- The start state contains $\langle S \rightarrow \mid E, \\rangle
- A state that contains $\langle X \rightarrow \alpha \mid b\rangle$ is labelled with "reduce with $X \rightarrow \alpha$ on $b^{\prime \prime}$

The DFA Transitions

- A state "State" that contains $\langle X \rightarrow \alpha \mid y \beta, b\rangle$ has a transition labeled y to a state that contains the items "Transition(State,y)" where y can be a terminal or non-terminal

Transition(State, y) =
Items = empty set
for each [X -> alpha | y beta, a] in State add [X -> alpha y | beta, b] to Items return Closure(Items)

LR Parsing Tables: Notes

- Parsing tables (DFA) can be constructed automatically for a CFG
- But, we still need to understand the construction to work with parser generators
- What kinds of errors can we expect?

Shift/Reduce Conflicts

- If a DFA state contains both

$$
\langle X \rightarrow \alpha \mid a \beta, b\rangle
$$

and

$$
\langle Y \rightarrow \gamma \mid, a\rangle
$$

- Then on input " a " we could either
- Shift into state $\langle X \rightarrow \alpha a \mid \beta, b\rangle$
- Reduce with $Y \rightarrow \gamma$
- This is called a shift-reduce conflict

Shift/Reduce Conflicts

- Typically due to ambiguities in the grammar

■ Classic example: the dangling else

$$
S \rightarrow \text { if } E \text { then } S \mid \text { if } E \text { then } S \text { else } S \mid O T H E R
$$

■ Will have a DFA state containing

- $\langle S \rightarrow$ if E then $S|$, else \rangle
- $\langle S \rightarrow$ if E then $S|$ else $S, x\rangle$
- If else follows then we can shift or reduce
- The default behavior of tools is to shift

More Shift/Reduce Conflicts

- Consider the ambiguous grammar

$$
E \rightarrow E+E|E * E| \mathrm{int}
$$

- We will have the states containing
- $\langle E \rightarrow E * \mid E,+\rangle \Rightarrow\langle E \rightarrow E * E \mid,+\rangle$
- $\langle E \rightarrow \mid E+E,+\rangle \Rightarrow\langle E \rightarrow E \mid+E,+\rangle$

■ Again we have a shift/reduce on input +
■ We need to reduce ($*$ binds tighter than +)

- Recall solution: declare the precedence of $*$ and +

More Shift/Reduce Conflicts

- In yacc we can declare precedence and associativity
\%left + \%left *

■ Precedence of a rule equals that of its last terminal
■ Resolve shift/reduce conflict with a shift if:

- no precedence declared for either rule or terminal
- input terminal has a higher precedence than the rule
- the precedences are the same and right associative

Using Precedence to Resolve Shift/Reduce Conflicts

- Back to the example
- $\langle E \rightarrow E * \mid E,+\rangle \Rightarrow\langle E \rightarrow E * E \mid,+\rangle$
- $\langle E \rightarrow \mid E+E,+\rangle \Rightarrow\langle E \rightarrow E \mid+E,+\rangle$

■ Will choose reduce because precedence of rule $E \rightarrow E * E$ is higher than of terminal +

Using Precedence to Resolve Shift/Reduce Conflicts

- Another example

■ $\langle E \rightarrow E+\mid E,+\rangle \Rightarrow\langle E \rightarrow E+E \mid,+\rangle$

- $\langle E \rightarrow \mid E+E,+\rangle \Rightarrow\langle E \rightarrow E \mid+E,+\rangle$
-...
■ Now we have a shift/reduce on input + : we choose redue because $E \rightarrow E+E$ and + have the same precedence and + is left associative

Precedence Declarations Revisited

- The phrase precedence declaration is misleading
- These declarations do not define precedence, they define conflict resolutions
- That is, they instruct shift-reduce parsers to resolve conflicts in certain ways - that is not quite the same thing as precedence

Reduce/Reduce Conflicts

- If a DFA state contains both

$$
\langle X \rightarrow \alpha \mid, a\rangle
$$

and

$$
\langle Y \rightarrow \beta \mid, a\rangle
$$

then on "a" we don not know which production to reduce

- This is called a reduce/reduce conflict

Reduce/Reduce Conflicts

- Usually due to gross ambiguity in the grammar
- Example:

$$
S \rightarrow \epsilon \mid \text { id } \mid \text { id } S
$$

- There are two parse trees for the string id
- This grammar is better if we rewrite it as

$$
S \rightarrow \epsilon \mid \text { id } S
$$

Using Parser Generators

- A parser generator automatically contructs the parsing DFA given a context free grammar
- Use precedence declarations and default conventions to resolve conflicts
- The parser algorithm is the same for all grammars
- But, most parser generators do not construct the DFA as described before because the $L R(1)$ parsing DFA has thousands of states for even simple languages

$L R(1)$ Parsing Tables are Big

■ But, many states are similar:

$$
\langle E \rightarrow \text { int } \mid, \$ /+\rangle \text { and }\langle E \rightarrow \text { int }|,) /+\rangle
$$

■ Idea: merge the DFA states whose items differ only in the lookahead tokens

■ We say that that such states have the same core

- In this example, we obtain

$$
\langle E \rightarrow i n t|, \$ /+/)\rangle
$$

The Core of a Set of $L R$ Items

- Definition: The core of a set of $L R$ items is the set of first components without the lookahead terminals

■ Example: the core of

$$
\{\langle X \rightarrow \alpha \mid \beta, b\rangle,\langle Y \rightarrow \gamma \mid \delta, d\rangle\}
$$

is

$$
\{X \rightarrow \alpha|\beta, Y \rightarrow \gamma| \delta\}
$$

LALR States

- Consider for example the $L R(1)$ states
- Example: the core of

$$
\begin{aligned}
& \{\langle X \rightarrow \alpha \mid, a\rangle,\langle Y \rightarrow \beta \mid, c\rangle\} \\
& \{\langle X \rightarrow \alpha \mid, b\rangle,\langle Y \rightarrow \beta \mid, d\rangle\}
\end{aligned}
$$

- They have the same core and can be merged
- The merged state contains:

$$
\{\langle X \rightarrow \alpha \mid, a / b\rangle,\langle Y \rightarrow \beta \mid, c / d\rangle\}
$$

- These are called $\operatorname{LALR(1)}$ states
- Stands for LookAhead LR
- Typically 10 times fewer $\operatorname{LALR}(1)$ states than $L R(1)$

A $\operatorname{LALR}(1)$ DFA

■ Repeat until all states have a distinct core

- Choose two distinct states with the same core
- Merge the states by creating a new one with the union of all the items
- Point edges from the predecessors to the new state
- New state points to all previous states

The LALR Parser Can Have Conflicts

- Consider for example the $L R(1)$ states

$$
\begin{aligned}
& \{\langle X \rightarrow \alpha \mid, a\rangle,\langle Y \rightarrow \beta \mid, b\rangle\} \\
& \{\langle X \rightarrow \alpha \mid, b\rangle,\langle Y \rightarrow \beta \mid, a\rangle\}
\end{aligned}
$$

- And the merged $\operatorname{LALR}(1)$ state

$$
\{\langle X \rightarrow \alpha \mid, a / b\rangle,\langle Y \rightarrow \beta \mid, a / b\rangle\}
$$

- Has a new reduce/reduce conflict

■ In practice such cases are rare

$L A L R$ versus $L R$ Parsing

■ LALR languages are not natural; they are an efficiency hack on $L R$ languages

- Most reasonable programming languages has an $\operatorname{LALR}(1)$ grammar
- LALR(1) parsing has become a standard for programming languages and for parser generators.

A Hierarchy of Grammar Classes

Semantic Actions in LR Parsing

■ We can now illustrate how semantic actions are implemented for $L R$ parsing

- Keep attributes on the stack:
- On shifting a, push the attribute for a on the stack
- On reduce $X \rightarrow \alpha$

1 pop attributes for α
2 compute attribute for X
3 push it on the stack

Performing Semantic Actions: Example

- Recall the example

$$
\begin{array}{rll}
E \rightarrow T+E_{1} & \left\{E . v a l=T . v a l+E_{1} . v a l\right\} \\
& \mid T & \{E . v a l=T . v a l\} \\
T \rightarrow \text { int } * T_{1} & \left\{T . v a l=\text { int.val }+T_{1} . v a l\right\} \\
& \mid \text { int } & \{T . v a l=\text { int.val }\}
\end{array}
$$

■ Consider parsing the string: $4 * 9+6$

Performing Semantic Actions: Example

- Recall the example

$$
\begin{array}{rll}
E \rightarrow T+E_{1} & \left\{E . v a l=T . v a l+E_{1} . v a l\right\} \\
& \mid T & \{E . v a l=T . v a l\} \\
T \rightarrow \text { int } * T_{1} & \left\{T . v a l=\text { int.val }+T_{1} . v a l\right\} \\
& \mid \text { int } & \{T . v a l=\text { int.val }\}
\end{array}
$$

■ Consider parsing the string: $4 * 9+6$

Performing Semantic Actions: Example

String	Action
\mid int *int + int	shift
int $(4) \mid *$ int + int $\$$	shift
int $(4) * \mid$ int + int $\$$	shift
int $(4) *$ int $(9) \mid+$ int $\$$	reduce $T \rightarrow$ int
int $(4) * T(9) \mid+$ int $\$$	reduce $T \rightarrow$ int $* T$
$T(36) \mid+$ int $\$$	shift
$T(36)+\mid$ int $\$$	shift
$T(36)+$ int 6$) \mid \$$	reduce $T \rightarrow$ int
$T(36)+T(6) \mid \$$	reduce $E \rightarrow T$
$T(36)+E(6) \mid \$$	reduce $E \rightarrow T+E$
$E(42) \mid \$$	accept

Notes on Parsing

- Parsing
- A solid foundation: context-free grammars
- A simple parser: $L L(1)$
- A more powerful parser: $L R(1)$
- An efficiency hack: $\operatorname{LALR(1)}$
- $\operatorname{LALR}(1)$ parser generators

