
CSC 425 - Principles of Compiler Design I

Introduction to Lexical Analysis

Outline

Informal sketch of lexical analysis

Identifies tokens in input stream

Issues in lexical analysis

Lookahead
Ambiguities

Specifying lexers

Regular Expressions

Lexical Analysis

The goal of lexical analysis is to partition an input string into
substrings where each substring is a token.

Example:

if (i == j)

z = 0;

else

z = 1;

is a string of characters:

if (i == j)\n\tz = 0;else\n\tz = 1;

A lexical analyzer is called a lexer or a scanner

Tokens

A token corresponds to a set of strings

These sets depend on the programming language

Examples:

Identifiers: strings of letters or digits starting with a digit
Integer: a non-empty string of digits
Keyword (reserved word): “if”, “else”, . . .
Whitespace: a non-empty sequence of spaces, newlines, and
tabs

What are Tokens used for?

Classify program substrings according to role

The output of lexical analysis is a stream of tokens

The input to the parser is a stream of tokens

The parser relies on token distinctions, for example, an
identifier is treated differently than a keyword

Designing an Lexical Analyzer: Step 1

Define a finite set of tokens

Tokens describe all items of interest
Choice of tokens depends on language

Example: recall

if (i == j)\n\tz = 0;else\n\tz = 1;

Useful tokens:
Integer, Keyword, Relation, Identifier, Whitespace, (,), =, ;

Designing an Lexical Analyzer: Step 2

Describe which strings belong to each token

Recall:

Identifiers: strings of letters or digits starting with a digit
Integer: a non-empty string of digits
Keyword (reserved word): “if”, “else”, . . .
Whitespace: a non-empty sequence of spaces, newlines, and
tabs

Lexical Analyzer: Implementation

The implementation of a lexical analyzer must do two things:

1 Recognize substrings corresponding to tokens
2 Return the value or lexeme of the token; the lexeme is the

substring

Example

Example: recall

if (i == j)\n\tz = 0;\ nelse\tz = 1;

Token-lexeme groupings:

Identifier: i, j, z
Keyword: if, else
Relation: ==
Integer: 0, 1
Single characters: (,), =, ;

Why do Lexical Analysis?

Simplify parsing

The lexer usually discards “uninteresting” tokens, for example,
whitespace and comments
Converts data early

Separate the logic to read source files

Potentially an issue on multiple platforms
Can optimize reading source files independently of the parser

Difficulties

Lexical analysis can be difficult depending on the source
language

Example: in FORTRAN whitespace is insignificant

VAR1 is the same as VA R1

Consider DO 5 I = 1,25 versus DO 5 I = 1.25

Reading left-to-right, we cannot determine if DO5I is a variable
or DO statement until after “,” is reached

Important points:

The goal is to partition the string reading left-to-right,
recognizing one token at a time
“Lookahead” may be required to decide where the token
boundaries are

Review

The goal of lexical analysis is to:

Partition the input string into lexemes (the smallest program
units that individually meaningful)
Identify the token of each lexeme

Left-to-right scan where sometimes lookahead is required

Next

We still need

A way to describe the lexemes of each token
A way to resolve ambiguities

Is if two variables i and f or one keyword?
Is == two equal signs or one operator?

Regular Languages

There are several formalisms for specifying tokens

Regular languages are the most popular

Simple and useful theory
Easy to understand
Efficient implementations

Languages

Definition. Let Σ be a set of characters. A language over Σ
is a set of strings of characters drawn from Σ. Σ is called the
alphabet.

Examples of Languages

Natural language

Alphabet: English characters
Language: English sentences
Note: not every string of English characters is an English
sentence

Programming language

Alphabet: ASCII
Language: C programs
Note: The ASCII character set is different from the English
character set

Regular Expressions

The lexical structure of most programming languages can be
specified with regular expressions.

Languages are sets of strings - we need some notation for
specifying which sets we want, that is, which strings are in the
set.

A regular expression (RE) is a notation for a regular language

If A is a regular expression, then we write L(A) to refer to the
language denoted by A.

Fundamental Regular Expressions

A L(A) Notes

a {a} singleton set for each symbol ’a’ in the alphabet Σ
ε {ε} empty string
∅ { } empty language

These are the basic building blocks of regular expressions.

Operations on Regular Expressions

A L(A) Notes

rs L(r)L(s) concatenation – r followed by s
r |s L(r) ∪ L(s) combination (union) – r or s
r∗ L(r)∗ zero or more occurrences of r (Kleene closure)

Precedence: ∗ (highest), concatenation, | (lowest)

Parenthesis can be used to group REs as needed

We abbreviate ’i’ ’f’ as ’if’ (concatenation)

Examples

L(if | then | else) = {“if”, “then”, “else”}
L((0 | 1) (0 | 1)) = {“00”, “01”, “10”, “11”}
L(0*) = {“”, “0”, “00”, “000”, . . . }
L((1|0)(1|0)*) = set of binary numbers with possible leading
zeros

Abbreviations

Abbreviation Meaning Notes

r+ (rr∗) one or more occurrences
r? (r |ε) zero or one occurrence
[a− z] (a|b| . . . |z) one character in given range
[abxyz] (a|b|x |y |z) one of the given characters

[ˆabc] [abc] any character except the given characters

The basic operations generate all possible regular expressions,
but common abbreviations are used for convenience.

