
CSC 425 - Principles of Compiler Design I

Introduction to Parsing

Outline

Regular languages revisited

Parser overview

Context-free grammars (CFGs)

Derivations

Ambiguity

Syntax errors

Languages and Automata

Formal languages are important in computer science,
especially in programming languages.

Regular languages are the weakest formal languages that are
widely used

We also need to study context-free languages

Limitations of Regular Languages

Intuition: A finite automaton that runs long enough must
repeat states

A finite automaton cannot remember the number of times it
has visited a particular state

A finite automaton has finite memory, so:

it can only store which state it is currently in, and
cannot count, except up to a finite limit.

Example, the language of balanced parentheses is not regular:
{(i)i | i ≥ 0}

The Role of the Parser

The parsing phase of a compiler can be thought of as a
function:

Input: sequence of tokens from the lexer
Output: parse tree of the program

Not all sequences of tokens are programs, so a parser must
distinguish between valid and invalid sequences of tokens

So, we need

a language for describing valid sequences of tokens, and
a method for distinguishing valid from invalid sequences of
tokens.

Context-Free Grammars

Many programming language constructs have a recursive
structure

Example, a statement is of the form:

if condition then statement else statement, or
while condition do statement, or
. . .

Context-free grammars (CFGs) are a natural notation for this
recursive structure

Context-Free Grammars

A context-free grammar consists of

A set of terminals T
A set of non-terminals N
A non-terminal start symbol S
A set of productions

Assuming that X ∈ N, productions are of the form

X → ε, or
X → Y1Y2 . . .Yn where Yi ∈ N ∪ T

Notational Conventions

In these lecture notes

Non-terminals are written in uppercase
Terminals are written in lowercase
The start symbol is the left-hand side of the first production

CFG Example

A fragment of a simple language

STMT → if COND then STMT else STMT

STMT → while COND do STMT

STMT → id = int

Notational abbreviation

STMT → if COND then STMT else STMT

| while COND do STMT

| id = int

CFG Example

Classic CFG example: simple arithmetic expressions

E → E ∗ E
| E + E

| (E)

| id

The Language of a CFG

Productions can be read as replacement rules

X → Y1 . . .Yn means that X can be replaced by Y1 . . .Yn

X → ε means that X can be erased (replaced with the empty
string)

The Language of a CFG: Key Idea

1 Begin with a string consisting of the start symbol S

2 Replace any non-terminal X in the string by a right-hand side
of some production X → Y1 . . .Yn

3 Repeat step 2 until there are no non-terminals in the string

The Language of a CFG

Let G be a context-free grammar with start symbol S . Then
the language of G (L(G)) is:

{a1 . . . an | S
∗→ a1 . . . an ∧ every ai ∈ T}

where

X1 . . .Xn
∗→ Y1 . . .Ym

denotes

X1 . . .Xn → . . .→ Y1 . . .Ym

Terminals

A terminal has no rules for replacing it, hence the name
terminal

Once a terminal is generated, it is permanent

Terminals ought to be the tokens of the language

Parentheses Example

Strings of balanced parentheses {(i)i | i ≥ 0}
Grammar

S → (S)

| ε

Example

A fragment of a simple language

STMT → if COND then STMT else STMT

| while COND do STMT

| id = int

COND → (id == id)

| (id! = id)

Example Continued

Some elements of the language

id = int

if (id == id) then id = int else id = int

while (id != id) do id = int

while (id == id) do while (id != id) do id = int

Arithmetic Example

Simple arithmetic expressions:

E → E + E | E ∗ E | (E) | id

Some elements of the language

id
(id)
(id) * id
id + id

Notes

The idea of a CFG is a big step

But,

Membership in a language is boolean; we also need the parse
tree of the input
Must handle errors gracefully
Need an implementation of CFGs

Form of the grammar is important

Many grammars generate the same language
Parsing tools are sensitive to the grammar

Derivations and Parse Trees

A derivation is a sequence of productions

S → . . .→ . . .→ . . .

A derivation can be depicted as a tree

The start symbol is the tree’s root
For a production X → Y1 . . .Yn add children Y1 . . .Yn to node
X

Derivation Example

Simple arithmetic expressions:

E → E + E | E ∗ E | (E) | id

String

id ∗ id + id

Derivation Example

E

→E + E

→E ∗ E + E

→id ∗ E + E

→id ∗ id + E

→id ∗ id + id

E

E

E

id

∗ E

id

+ E

id

Notes on Derivations

A parse tree has:

terminals at the leaves, and
non-terminals at the interior nodes

An in-order traversal of the leaves is the original input

The parse tree shows the association of the operations, the
input string does not

Left-most and Right-most Derivations

The previous example was a left-most derivation

At each step, replace the left-most non-terminal

There is an equivalent notion of a right-most derivation

At each step, replace the right-most non-terminal

Right-most Derivation Example

E

→E + E

→E + id

→E ∗ E + id

→E ∗ id + id

→id ∗ id + id

E

E

E

id

∗ E

id

+ E

id

Derivations and Parse Trees

Note that right-most and left-most derivations have the same
parse tree

The difference is the order in which branches are added

Summary of Derivations

We are not only interested in whether S ∈ L(G), we also need
a parse tree for S

A derivation defines a parse tree, but one parse tree may have
many derivations

Left-most and right-most derivations are important in the
parser implementation

Ambiguity

Grammar

E → E + E | E ∗ E | (E) | id

The string id ∗ id + id has two parse trees:

E

E

id

∗ E

E

id

+ E

id

E

E

E

id

∗ E

id

+ E

id

Ambiguity

A grammar is ambiguous if it has more than one parse tree for
some string

Ambiguity leaves the meaning of some programs ill-defined

Ambiguity is common in programming languages

Dealing with Ambiguity

There are several ways to handle ambiguity

The most direct method is to rewrite the grammar
unambiguously

Example: enforcing precedence in the previous grammar

E → T + E

| T
T → id ∗ T
| id
| (E)

Ambiguity: The Dangling Else

Consider the following grammar

S → if C then S

| if C then S else S

| OTHER

This grammar is ambiguous: the expression
“if C1 then if C2 then S3 else S4” has two parse trees

The Dangling Else: a Fix

We want “else” to match the closest unmatched “then”

We can describe this in the grammar

S → MIF

| UIF
MIF → if C then MIF else MIF

| OTHER
UIF → if C then S

| if C then MIF else UIF

Ambiguity

No general techniques for handling ambiguity

Impossible to automatically convert an ambiguous grammar to
an unambiguous one

Used with care, ambiguity can simplify the grammar

Sometimes allows more natural definitions
but, we need disambiguation mechanisms

Precedence and Associativity Declarations

Instead of rewriting the grammar

use the more natural (ambiguous) grammar
along with disambiguating declarations

Most tools allow precedence and associativity declarations to
disambiguate grammars

Error Handling

The purpose of the compiler is to

detect invalid programs
translate valid programs

Many kinds of possible errors

Error Kind Detected by

Lexical Lexer
Syntax Parser
Semantic Type Checker
Correctness Tester/User

Syntax Error Handling

Error handler should

report errors accurately and clearly
recover from an error quickly
not slow down the compilation of valid programs

Good error handling is typically difficult to achieve

Approaches to Syntax Error Recovery

From simple to complex

panic mode
error productions
automatic local or global correction

Not all are supported by all parser generator tools

Syntax Error Recovery: Panic Mode

Simplest, most popular method

When an error is detected:

discard tokens until one with a clear role is found
continue from there

Such tokens are called synchronizing tokens and are typically
the statement or expression terminators

Syntax Error Recovery: Error Productions

Idea: specify in the grammar know common mistakes

Essentially promotes common errors to alternative syntax

Example

Common mistake: write “5 x” instead of “5 * x”
Fix: add the production “E → . . . | EE”

Disadvantage: this complicates the grammar

Syntax Error Recovery: Past and Present

Past

Slow recompilation cycle (even once a day)
Find as many errors in one cycle as possible
Researchers could not let go of the topic

Present

Quick recompilation cycle
Users tend to correct one error per cycle
Complex error recovery is needed less
Panic-mode seems good enough in practice

