CSC 425 - Principles of Compiler Design |

Introduction to Parsing

Outline

Regular languages revisited
Parser overview

Context-free grammars (CFGs)
Derivations

Ambiguity

Syntax errors

Languages and Automata

m Formal languages are important in computer science,
especially in programming languages.

m Regular languages are the weakest formal languages that are
widely used

m We also need to study context-free languages

Limitations of Regular Languages

m Intuition: A finite automaton that runs long enough must
repeat states

m A finite automaton cannot remember the number of times it
has visited a particular state

m A finite automaton has finite memory, so:

m it can only store which state it is currently in, and
m cannot count, except up to a finite limit.

m Example, the language of balanced parentheses is not regular:

{() li=0}

The Role of the Parser

m The parsing phase of a compiler can be thought of as a
function:

m Input: sequence of tokens from the lexer
m Output: parse tree of the program
m Not all sequences of tokens are programs, so a parser must
distinguish between valid and invalid sequences of tokens
m So, we need

m a language for describing valid sequences of tokens, and
m a method for distinguishing valid from invalid sequences of
tokens.

Context-Free Grammars

m Many programming language constructs have a recursive
structure
m Example, a statement is of the form:
m if condition then statement else statement, or
m while condition do statement, or
" ...
m Context-free grammars (CFGs) are a natural notation for this
recursive structure

Context-Free Grammars

m A context-free grammar consists of
m A set of terminals T
m A set of non-terminals N
m A non-terminal start symbol S
m A set of productions

m Assuming that X € N, productions are of the form
m X — ¢ or
B X—=>Y1Ys...Y,where Y, e NUT

Notational Conventions

m In these lecture notes

m Non-terminals are written in uppercase
m Terminals are written in lowercase
m The start symbol is the left-hand side of the first production

CFG Example

m A fragment of a simple language

STMT — if COND then STMT else STMT
STMT — while COND do STMT
STMT — id = int

m Notational abbreviation

STMT — if COND then STMT else STMT
| while COND do STMT
lid = int

CFG Example

m Classic CFG example: simple arithmetic expressions

E—ExE
| E+E

| (E)
| id

The Language of a CFG

m Productions can be read as replacement rules
B X — Y:...Y, means that X can be replaced by Y;...Y,

m X — e means that X can be erased (replaced with the empty
string)

The Language of a CFG: Key ldea

Begin with a string consisting of the start symbol S

Replace any non-terminal X in the string by a right-hand side
of some production X — Y7...Y,

Repeat step 2 until there are no non-terminals in the string

The Language of a CFG

Let G be a context-free grammar with start symbol S. Then
the language of G (L(G)) is:

{a1...an|S S a1...apnANevery a; € T}
where

X1... X > Y1 Yy
denotes

Xi1..Xp—=>...=>Y1... Y,

Terminals

m A terminal has no rules for replacing it, hence the name
terminal

m Once a terminal is generated, it is permanent

m Terminals ought to be the tokens of the language

Parentheses Example

m Strings of balanced parentheses {(')' | i > 0}

m Grammar

S5 —(S)

| €

Example

m A fragment of a simple language

STMT — if COND then STMT else STMT
| while COND do STMT
| id = int

COND — (id == id)
| (id! = id)

Example Continued

m Some elements of the language
m id = int
m if (id == id) then id = int else id = int
m while (id !'= id) do id = int
m while (id == id) do while (id !'= id) do id = int

Arithmetic Example

m Simple arithmetic expressions:
E—-E+E|ExE|(E)|id

m Some elements of the language
m id
m (id)
m (id) *id
m id+ id

Notes

m The idea of a CFG is a big step

m But,
m Membership in a language is boolean; we also need the parse
tree of the input
m Must handle errors gracefully
m Need an implementation of CFGs

m Form of the grammar is important

m Many grammars generate the same language
m Parsing tools are sensitive to the grammar

Derivations and Parse Trees

m A derivation is a sequence of productions

S— ... = .. .= ...

m A derivation can be depicted as a tree

m The start symbol is the tree's root
m For a production X — Y7...Y, add children Y;...Y, to node
X

Derivation Example

m Simple arithmetic expressions:
E—-E+E|ExE|(E)|id
m String

id * id + id

E
—E+E
—ExE+E
—id«E+E
—id % id + E
—id * id + id

Derivation Example

Notes on Derivations

m A parse tree has:

m terminals at the leaves, and
m non-terminals at the interior nodes

m An in-order traversal of the leaves is the original input

m The parse tree shows the association of the operations, the
input string does not

Left-most and Right-most Derivations

m The previous example was a left-most derivation
m At each step, replace the left-most non-terminal

m There is an equivalent notion of a right-most derivation
m At each step, replace the right-most non-terminal

Right-most Derivation Example

E
—E+E
—E+id
—ExE+id
—E xid + id
—id * id + id

Derivations and Parse Trees

m Note that right-most and left-most derivations have the same
parse tree

m T he difference is the order in which branches are added

Summary of Derivations

m We are not only interested in whether S € L(G), we also need
a parse tree for S

m A derivation defines a parse tree, but one parse tree may have
many derivations

m Left-most and right-most derivations are important in the
parser implementation

Ambiguity

m Grammar
E—-E+E|ExE|(E)|id

m The string id * id + id has two parse trees:

E E
I VN
E * E E +
| VRN VRN
id E + E E * E
id id id id

Ambiguity

m A grammar is ambiguous if it has more than one parse tree for
some string

m Ambiguity leaves the meaning of some programs ill-defined

m Ambiguity is common in programming languages

Dealing with Ambiguity

m There are several ways to handle ambiguity

m The most direct method is to rewrite the grammar
unambiguously

m Example: enforcing precedence in the previous grammar

E>T+E
T
TidsT
| id
| (E)

Ambiguity: The Dangling Else

m Consider the following grammar

S —if CthenS
| if C thenS else S
| OTHER

m This grammar is ambiguous: the expression
“if Cy then if C, then Sz else S;" has two parse trees

The Dangling Else: a Fix

m We want “else” to match the closest unmatched “then”

m We can describe this in the grammar

S — MIF
| UIF
MIF — if C then MIF else MIF
| OTHER
UIF — if C then S
| if C then MIF else UIF

Ambiguity

m No general techniques for handling ambiguity

m Impossible to automatically convert an ambiguous grammar to
an unambiguous one

m Used with care, ambiguity can simplify the grammar

m Sometimes allows more natural definitions
m but, we need disambiguation mechanisms

Precedence and Associativity Declarations

m Instead of rewriting the grammar
m use the more natural (ambiguous) grammar
m along with disambiguating declarations
m Most tools allow precedence and associativity declarations to
disambiguate grammars

Error Handling

m The purpose of the compiler is to

m detect invalid programs
m translate valid programs

m Many kinds of possible errors

Error Kind Detected by
Lexical Lexer

Syntax Parser
Semantic Type Checker
Correctness Tester/User

Syntax Error Handling

m Error handler should

m report errors accurately and clearly
m recover from an error quickly
m not slow down the compilation of valid programs

m Good error handling is typically difficult to achieve

Approaches to Syntax Error Recovery

m From simple to complex

® panic mode
m error productions
m automatic local or global correction

m Not all are supported by all parser generator tools

Syntax Error Recovery: Panic Mode

m Simplest, most popular method
m When an error is detected:
m discard tokens until one with a clear role is found
m continue from there
m Such tokens are called synchronizing tokens and are typically
the statement or expression terminators

Syntax Error Recovery: Error Productions

Idea: specify in the grammar know common mistakes
Essentially promotes common errors to alternative syntax

Example

m Common mistake: write “5 X" instead of “5 * x"
m Fix: add the production “E — ... | EE"

Disadvantage: this complicates the grammar

Syntax Error Recovery: Past and Present

m Past

m Slow recompilation cycle (even once a day)
m Find as many errors in one cycle as possible
m Researchers could not let go of the topic
m Present
m Quick recompilation cycle
Users tend to correct one error per cycle

|
m Complex error recovery is needed less
m Panic-mode seems good enough in practice

