
CSC 526 - Principles of Compiler Design II

Linking and Loading



Outline

Object files

Linking

Relocations

Shared libraries

Type checking



Separate Compilation

Compile different parts of your program at different times

Then, link them together later

This is a good thing

Faster compile times on small changes
Software engineering (modularity)
Independently develop different parts (libraries)

All major languages and big projects use this concept



Pieces

A compiled program fragment is called an object file

An object file contains:

Code
Variables
Debugging information
References to code and data that appear elsewhere
Tables for organizing the above

Object files are implicit for interpreters



Two Big Tasks

The operating system uses virtual memory, so every program
starts at a standard (virtual) address

Linking involves tow tasks:

Relocating the code and data from each object file to a
particular fixed virtual address
Resolving references so that they point to concrete and correct
virtual addresses



Relocatable Object Files

For this to work, a relocatable object file has three tables:

Import table: points to places in the code where an external
symbol is referenced
Export table: points to symbol definitions in the code that are
exported for use by others
Relocation table: points to places in the code where local
symbols are referenced



Example

1 extern double sqrt(double x);

2
3 static double temp = 0.0

4
5 double quadratic(double a, b, c) {

6 temp = b*b - 4.0*a*c;

7 if (temp >= 0.0) {

8 goto has_roots;

9 }

10 throw Invalid_Argument;

11 has_roots:

12 return (-b + sqrt(temp)) / (2.0*a);

13 }



Example

Import table: the call to sqrt on line 12 needs to use the
address of final location of sqrt

Export table: The quadratic function is exported, so client
code can patch the symbolic labels with the concrete address
once it is known

Relocation table: references to the location of the temp
variable declared on line 3 needs to be replaced with the
concrete address. This also needs to be done for the
has roots label.



Considerations

If two programs both use math.o, then they will each get a
copy of it

If we run both programs we will load both copies of math.o
into memory – this is wasteful because both copies are
identical

Can we share math.o?



Dynamic Linking

Idea: shared libraries (.so) or dynamically linked libraries
(.dll) use virtual memory so that multiple programs can
share the same libraries in main memory

Load the library into physical memory once
Each program using it has a virtual address v that points to it
During dynamic linking, resolve references to library symbols
using that virtual address v
Inspect globals, etc.



Relocations in Shared Libraries

Since we are sharing the code to math.so, we cannot set its
relocations separately for each client

If math.so has a jump to a label, that must be resolved to
the same location for all clients

We can only patch the instruction once
Every thread/program shares that patched code

Idea: instead of say, “jump to 0x1060”, use “jump to
PC+0x60”

This code can be relocated to any address
This is called position-independent code (PIC)



Data Linkage Table

Store shared-library global variable addresses starting at some
virtual address A

Compile the PIC assuming that some register will hold the
current value of A

The entry point to a shared library (or the caller) sets the
register to hold A



Shared Data

Typically each client of a shared library X wants its own
copies of X ’s global data

When dynamically linking, the code segment is shared, but
the data segment is copied

Detail: use an extra level of indirection when the PIC shared
library code does callbacks to unshared main() or references
global variables from unshared main()

This allows the unshared non-PIC target address to be kept in
the data segment, which is private to each program



Fully Dynamic Linking

So far, this is all happening at load time when you start the
program

Could we do it at run-time on demand?

Decrease load times with many libraries
Support dynamically loaded code
Important for scripting languages

Use the linkage table as before

Instead of loading the for for, say foo(), point to a special
stub procedure that loads foo() and all the variables from the
library and then updates the linkage table to point to the
newly-loaded foo()



Type Checking

Is this a problem?

File: main.c

extern string sqrt ();

int main() {

string str = sqrt ();

printf ("%s\n", str);

return 0;

}

File: math.c

double sqrt(double a) {

return ...;

}



Header or Interface Files

When we type-check a piece of code, we generate an interface
file

Listing all exported functions and their types
Listing all exported globals and their types

When we compile a client of a library, we check the interface
file for the types of external symbols

Can anything go wrong?



Checksums and Name Mangling

Take all of the exported symbols and all of their types from
the interface file and store them in a list, then perform a hash
(or checksum)

Include the hash value in the relocatable object

Each library client also computes the hash value based on the
interface it was given

At link time, check to make sure the hash values are the same

C++ name mangling is the same idea, but performed on a
per symbol basis, rather than a per interface basis



Summary

We want separate compilation for program pieces, so we must
link those compiled pieces together later.

We need to resolve references from one object to another

We also want to share libraries between programs

We also want to type-check separately compiled modules


