
CSC 425 - Principles of Compiler Design I

Operational Semantics



Outline

Operational semantics is a precise way of specifying how to
evaluate a program

A formal semantics tells you what each expression means

Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values



Motivation

The meaning of an expression is what happens when it is
evaluated

The definition of a programming language:

The tokens ⇒ lexical analysis
The grammar ⇒ syntactic analysis
The typing rules ⇒ semantic analysis
The evaluation rules ⇒ interpretation



Assembly Language Description of Semantics

Assembly language descriptions of language implementation
have too many irrelevant details

Which way the stack grows
How integers are represented on a particular machine
The particular instruction set of the architecture

We need a complete but not overly restrictive specification



Programming Language Semantics

There many ways to specify programming language semantics

They are all equivalent, but some are more suitable to various
tasks than others

Operational semantics

Describes the evaluation of programs on an abstract machine
Most useful for specifying implementations



Other Kinds of Semantics

Denotational semantics

The meaning of a program is expressed as a mathematical
object
Elegant but quite complicated

Axiomatic semantics

Useful for checking that programs satisfy certain correctness
properties
The foundation of many program verification systems



Introduction to Operational Semantics

Once again we introduce a formal notation using logical rules
of inference

Recall the typing judgement

Context ` e : T

(in the given Context, expression e has type T )

We try something similar for evaluation

Context ` e : v

(in the given Context, expression e evaluates to value v)



Example Operational Semantics Inference Rule

Context ` e1 : 5
Context ` e2 : 7

Context ` e1 + e2 : 12

In general, the result of evaluating an expression depends on
the result of evaluating its subexpressions

The logical rules specify everything that is needed to evaluate
an expression



What Contexts are Needed?

Contexts are needed to handle variables

Consider the evaluation of x := x + 1

We need to keep track of values of variables
We need to allow variables to change their values during
evaluation

We track variables and their values with:

An environment: tells us at what address in memory is the
value of a variable stored
A store: tells us what is the contents of a memory location



Variable Environments

A variable environment is a map from variable names to
locations

Tells in what memory location the value of a variable is
stored; locations = memory addresses

Environment tracks in-scope variables only

Example environment:

E = [a : l1, b : l2]

To lookup a variable a in environment E , we write E (a)



Stores

A store maps memory locations to values

Example store:

S = [l1 → 5, l2 → 7]

To lookup the contents of a location l1 in store S , we write
S(l1)

To perform an assignment of 23 to location l1, we write
S [23/l1]; this denotes a new store S ′ such that S ′(l1) = 23
and S ′(l) = S(l) if l 6= l1



Operational Rules

The evaluation judgement is

E , S ` e : v ,S ′

read:

Given E the current environment
And S the current store
If the evaluation of e terminates, then
The returned value is v
And the new store is S ′



Notes

The “result” of evaluating an expression is both a value and
also a new store

Changes to the store model side-effects, that is, assignments
to mutable variables

The variable environment does not change

The operational semantics allows for non-terminating
evaluations

We define one rule for each kind of expression



Example Operational Semantics for Base Values

E , S ` true : Bool(true), S

E , S ` false : Bool(false),S

i is an integer literal

E ,S ` i : Int(i), S

s is an string literal

E , S ` s : String(i), S

Note: no side effects in these cases

Bool, Int, and String represent type constructors of some sort



Example Operational Semantics of Variable References

E (id) = lid
S(lid) = v

E , S ` id : v ,S

Note the double lookup of variables

First from name to location (compile time)
Then from location to value (run time)

The store does not change



Example Operational Semantics of Assignment

E , S ` e : v ,S1
E (id) = lid
S2 = S1[v/lid ]

E , S ` id ← e : v , S2

A three step process

Evaluate the right hand side; a value v and a new store S1
Fetch the location of the assigned variable
The result is the value v and an updated store

The environment does not change



Example Operational Semantics of Conditionals

E , S ` e1 : Bool(true), S1
E , S1 ` e2 : v ,S2

E , S ` if e1 thene2 elsee3 : v ,S2

The “threading” of the store enforces an evaluation sequence

e1 must be evaluated first to produce S1
The e2 can be evaluated

The result of evaluating e1 is a boolean

The typing rules ensure this fact
There is another similar rule for Bool(false)



Example Operational Semantics of Sequences

E , S ` e1 : v1,S1
E , S1 ` e2 : v2,S2
. . .
E , Sn−1 ` en : vn, Sn

E , S ` (e1; . . . ; en) : vn, Sn

Again, the “threading” of the store enforces an evaluation
sequence

Only the last value is used

But, all the side-effects are collected



Example Operational Semantics of Loops

E , S ` e1 : Bool(false), S1

E , S ` while e1 do e2 : void ,S1

If e1 evaluates to Bool(false), then the loop terminates
immediately

With the side-effects from the evaluation of e1
And with (arbitrary) result value void

The typing rules ensure that e1 evaluates to a boolean



Example Operational Semantics of Loops

E , S ` e1 : Bool(true),S1
E , S1 ` e2 : v ,S2
E , S2 ` while e1 do e2 : void , S3

E , S ` while e1 do e2 : void , S3

Note the sequencing (S → S1 → S2 → S3)

Note how looping is expressed

Evaluation of “while ...” is expressed in terms of the
evaluation of itself in another state

The result of evaluating e2 is discarded; only the side-effect is
preserved



Example Operational Semantics of Let Expressions

E , S ` e1 : v1,S1
?, ? ` e2 : v ,S2

E , S ` let id : T := e1 in e2 : v2, S2

What is the context in which e2 must be evaluated?

Environment like E , but with a new binding of id to a fresh
location lnew
Store like S1, but with lnew mapped to v1



Example Operational Semantics of Let Expressions

We write lnew = newloc(S) to say that lnew is a location that
is not already used in S

Think of newloc as the dynamic memory allocation function
(or reserving stack space)

The operational rule for let:

E ,S ` e1 : v1, S1
lnew = newloc(S1)
E [lnew/id ],S1[v1/lnew ] ` e2 : v ,S2

E ,S ` let id : T := e1 in e2 : v2,S2



Runtime Errors

There are some runtime errors that the type checker does not
try to prevent

Division by zero
Array out of bounds
Heap overflow

In such cases, the execution must abort gracefully



Conclusions

Operational rules are very precise; nothing is left unspecified

Operational rules contain a lot of details

Most languages do not have a well specified operational
semantics

When portability is important, an operational semantics
becomes essential


