CSC 425 - Principles of Compiler Design |

Operational Semantics



Outline

m Operational semantics is a precise way of specifying how to
evaluate a program

m A formal semantics tells you what each expression means

m Meaning depends on context: a variable environment will map
variables to memory locations and a store will map memory
locations to values



Motivation

m The meaning of an expression is what happens when it is
evaluated
m The definition of a programming language:

m The tokens = lexical analysis

m The grammar = syntactic analysis

m The typing rules = semantic analysis
m The evaluation rules = interpretation



Assembly Language Description of Semantics

m Assembly language descriptions of language implementation
have too many irrelevant details
m Which way the stack grows
m How integers are represented on a particular machine
m The particular instruction set of the architecture

m We need a complete but not overly restrictive specification



Programming Language Semantics

m There many ways to specify programming language semantics

m They are all equivalent, but some are more suitable to various
tasks than others

m Operational semantics

m Describes the evaluation of programs on an abstract machine
m Most useful for specifying implementations



Other Kinds of Semantics

m Denotational semantics
m The meaning of a program is expressed as a mathematical
object
m Elegant but quite complicated
m Axiomatic semantics
m Useful for checking that programs satisfy certain correctness
properties
m The foundation of many program verification systems



Introduction to Operational Semantics

m Once again we introduce a formal notation using logical rules
of inference

m Recall the typing judgement
Contextte: T

(in the given Context, expression e has type T)

m We try something similar for evaluation
Context e : v

(in the given Context, expression e evaluates to value v)



Example Operational Semantics Inference Rule

Context €1 :5
Context ey : 7

Context +e; + e : 12

m In general, the result of evaluating an expression depends on
the result of evaluating its subexpressions

m The logical rules specify everything that is needed to evaluate
an expression



What Contexts are Needed?

m Contexts are needed to handle variables
m Consider the evaluation of x := x + 1

m We need to keep track of values of variables
m We need to allow variables to change their values during
evaluation

m We track variables and their values with:

m An environment: tells us at what address in memory is the
value of a variable stored
m A store: tells us what is the contents of a memory location



Variable Environments

A variable environment is a map from variable names to
locations

Tells in what memory location the value of a variable is
stored; locations = memory addresses

Environment tracks in-scope variables only

Example environment:
E:[a:ll,b: /2]

To lookup a variable a in environment E, we write E(a)



Stores

A store maps memory locations to values

Example store:
5:[/1—>5,/2—>7]

To lookup the contents of a location / in store S, we write
5(h)

To perform an assignment of 23 to location /1, we write
S[23/h]; this denotes a new store S’ such that S'(h) = 23
and S'(N)=S()if I £ K



Operational Rules

m The evaluation judgement is
E,SFe:v,S

read:

Given E the current environment

And S the current store

If the evaluation of e terminates, then
The returned value is v

And the new store is S’



Notes

The “result” of evaluating an expression is both a value and
also a new store

Changes to the store model side-effects, that is, assignments
to mutable variables

The variable environment does not change

The operational semantics allows for non-terminating
evaluations

We define one rule for each kind of expression



Example Operational Semantics for Base Values

E,S \ true : Bool(true), S

E,S I false : Bool(false), S

i is an integer literal
E,Sti:Int(i),S

s is an string literal
E,Sts: String(i), S

m Note: no side effects in these cases

m Bool, Int, and String represent type constructors of some sort



Example Operational Semantics of Variable References

E(id) = lig
S(hd)=v
E,Stid:v,S

m Note the double lookup of variables

m First from name to location (compile time)
m Then from location to value (run time)

m The store does not change



Example Operational Semantics of Assignment

E.Ske:v,5

E(id) = g

S2 = S1[v/lid]
E.Skid+—e:v,5

m A three step process

m Evaluate the right hand side; a value v and a new store S;
m Fetch the location of the assigned variable
m The result is the value v and an updated store

m The environment does not change



Example Operational Semantics of Conditionals

E,SF e : Bool(true), S1
E,Sl F (S V,52
E,S t if e, thenes elsees : v, Sy

m The “threading” of the store enforces an evaluation sequence
m e; must be evaluated first to produce S;
m The e can be evaluated

m The result of evaluating e is a boolean

m The typing rules ensure this fact
m There is another similar rule for Bool(false)



Example Operational Semantics of Sequences

E.Ske:v,5
E,Sl |—62 . VQ,SQ

E.S,._1Fen:vnSh
E,SFk(e1;...;€n): Vn S

m Again, the “threading” of the store enforces an evaluation
sequence

m Only the last value is used

m But, all the side-effects are collected



Example Operational Semantics of Loops

E,SF e : Bool(false), S1
E,S + while e; do e : void, 51

m If e; evaluates to Bool(false), then the loop terminates
immediately

m With the side-effects from the evaluation of ¢
m And with (arbitrary) result value void

m The typing rules ensure that e; evaluates to a boolean



Example Operational Semantics of Loops

E,St e : Bool(true), S

E, 51 H €V, 52

E. S, b while ey do e, : void, S3
E.S + while e; do e : void, S3

m Note the sequencing (S — S — S — S3)
m Note how looping is expressed

"

m Evaluation of “while ..." is expressed in terms of the
evaluation of itself in another state

m The result of evaluating e is discarded; only the side-effect is
preserved



Example Operational Semantics of Let Expressions

E,S}—el:vl,Sl
77t e v, S
E,Stletid: T :=eine:vw,S

m What is the context in which e; must be evaluated?
m Environment like E, but with a new binding of id to a fresh
location /ey
m Store like Sy, but with /.., mapped to vy



Example Operational Semantics of Let Expressions

m We write /ey = newloc(S) to say that /yey is a location that
is not already used in S

m Think of newloc as the dynamic memory allocation function
(or reserving stack space)

m The operational rule for let:

E.Skei:v,5

Inew = newloc(S1)
E[l,,ew/id],Sl[vl/I,,eW] - (S V,52
E,Stletid: T :=eine:vw,S




Runtime Errors

m There are some runtime errors that the type checker does not
try to prevent
m Division by zero
m Array out of bounds
m Heap overflow

m In such cases, the execution must abort gracefully



Conclusions

m Operational rules are very precise; nothing is left unspecified
m Operational rules contain a lot of details

m Most languages do not have a well specified operational
semantics

m When portability is important, an operational semantics
becomes essential



