
CSC 425 - Principles of Compiler Design I

Overview



The Implementation of Programming Languages

Two major strategies:

Interpreter: A program that reads a source program and
produces the results of executing this source
Compiler: A program that reads a program written in one
language (source language) and translates it into an equivalent
program in another language (target language) (Aho et al).

Interpreters run programs directly

Compilers do extensive preprocessing



Structure of a Compiler

Compilers are typically divided into two main parts:

Front end: (analysis) read the source language program and
understand its structure
Back end: (synthesis) generate an equivalent target language
program and optionally optimize the code without changing its
behavior.



Properties of a Compiler

Recognize legal programs

Generate correct code (most important)

Conform to the specification of the source language

Manage runtime storage of all variables/data



Intermediate Representations

The phases of a compiler communicate via Intermediate
Representations (IR)

The front end maps the source language into an IR

The back end maps an IR to the target language

Often multiple IRs are produced by different phases of the
front and back ends



Typical Phases of a Compiler

Lexical Analysis (Scanner): converts a character stream to a
token stream

Parser: converts a token stream to an IR, typically an abstract
syntax tree (AST).

Semantic analysis: attempt to understand the meaning of the
program (this is difficult) – perform limited analysis to catch
inconsistencies, for example, type checking.

Optimization (optional): modify programs based on some
metric, for example, execution time or size of executable.

Code generation: generate the target language, typically
assembly code.



Lexical Analysis Example

Input text:

// This is a comment

if (x >= y) y = 9000;

Token stream:
IF, LPAREN, ID(x), GEQ, ID(y,) RPAREN, ID(y), ASSIGN,
INT(9000), SEMICOLON

Note: tokens are atomic objects, not character strings;
comments and whitespace are typically not tokens



Parser Example

Input token stream:
IF, LPAREN, ID(x), GEQ, ID(y,) RPAREN, ID(y), ASSIGN,
INT(9000), SEMICOLON

Output Abstract Syntax Tree:

if-statement

>=

x y

assign

y 9000

Note: an AST is a tree where nodes are operations and
children are operands



Semantic Analysis Example

Compilers perform many semantic checks

Example C++ variable scope:

int x = 3;

{

int x = 4;

cout << x; // prints 4, not 3

}

Example C++ type checking:

int y = 4;

string z = "Bob";

x + z; // this is an error



Optimization Example

Optimization improves the code in some fashion

Example common subexpression elimination:
(x + y) * (x + y) → t = x + y; t * t;

Example constant folding
(1 + 2) * x → 3 * x



Issues

Compilers and interpreters are almost this simple, but there
are many pitfalls

Example: How are bad programs handled?

Language design determines the difficulty in implementing a
compiler



Why Study Compilers?

Become a better programmer

insight into the interaction between high-level source
languages, compilers, and hardware
understand implementation techniques
better intuition about what your code does
understanding optimization allows you to write code that is
easier for the compiler to optimize



Why Study Compilers?

Compiler techniques are everywhere

Parsing (“little” languages, XML, ...)
Software tools (verifiers, checkers, ...)
Database engines and query languages
Text processing



Why Study Compilers?

Blend of theory and engineering

Lots of interesting theory around compilers
But also interesting engineering challenges and tradeoffs
And some difficult problems (NP-hard or worse)



Why Study Compilers?

Draws ideas from many parts of computer science

AI: greedy algorithms, heuristic search
Algorithms: graph algorithms, dynamic programming,
approximation algorithms
Theory: grammars, deterministic finite automata, fixed point
algorithms
Systems: interaction with OS, runtime systems
Architecture: pipelines, instruction set use, memory hierarchy
management, locality


