
CSC 425 - Principles of Compiler Design I

Run-time Environments

Status

We have covered the front-end phases

Lexical analysis
Parsing
Semantic analysis

Next are the back-end phases

Code generation
Optimization
Register allocation
Instruction scheduling

In this course, we will examine code generation

Run-time Environments

Before discussing code generation, we need to understand
what we are trying to generate

There are a number of standard techniques for structuring
executable code that are widely used.

Outline

Management of run-time resources

Correspondence between static (compile-time) and dynamic
(run-time) structures

Storage organization

Run-time Resources

Execution of a program is initially under the control of the
operating system (OS)

When a program is invoked:

The OS allocates space for the program
The code is loaded into part of this space
The OS jumps to the entry point of the program, that is, to
the beginning of the “main” function

Memory Layout

Code

Other Space

Low Address

High Address

Memory

Notes

By tradition, pictures of run-time memory organization have:

Low addresses at the top
High addresses at the bottom
Lines delimiting areas for different kinds of data

These pictures are simplifications

For example, not all memory need be contiguous

Organization of Code Space

Usually, code is generated one function at a time; the code
area has the form:

Code for function 1

Code for function 2

. . .

Code for function n

entry point

entry point

entry point

Careful layout of code within a function can improve
instruction-cache utilization and give better performance

Careful attention in the order in which functions are processed
can also improve instruction-cache utilization

What is Other Space?

Holds all data needed for the program’s execution

Other space is data space

Compiler is responsible for:

generating code
orchestrating the use of the data area

Code Generation Goals

Two main goals:

Correctness
Speed

Most complications in code generation come from trying to be
fast as well as correct

Assumptions about Flow of Control

(1) Execution is sequential; at each step, control is at some
specific program point and moves from one point to another
in a well-defined order

(2) When a procedure is called, control eventually returns to
the point immediately following the place where the call was
made

Question: do these assumptions always hold?

Language Issues that Affect the Compiler

Can procedures be recursive?

What happens to the values of the locals on return from a
procedure?

Can a procedure refer to non-local variables?

How are parameters to a procedure passed?

Can procedures be passed as parameters?

Can procedures be returned as results?

Can storage be allocated dynamically under program control?

Must storage be deallocated explicitly?

Activations

An invocation of procedure P is an activation of P

The lifetime of an activation of P is:

All the steps to execute P
Including all the steps in procedures that P calls

Lifetimes of Variables

The lifetime of a variable x is the portion of execution in
which x is defined

Note that:

Lifetime is a dynamic (run-time) concept
Scope is (usually) a static concept

Activation Trees

Assumption (2) requires that when P calls Q, then Q returns
before P does

Lifetimes of procedure activations are thus either disjoint or
properly nested

Activation lifetimes can be depicted as a tree

Example 1

let

function g(): int = (42)

function f(): int = g()

function main() = (g(); f();)

in

main()

end

main

g f

g

Example 2

let

function g(): int = (42)

function f(x:int): int =

if x = 0 then g()

else f(x-1)

function main() = f(3)

in

main()

end

What is the activation tree for this example?

Notes

The activation tree depends on run-time behavior

The activation tree may be different for every program input

Since activations are properly nested, a (control) stack can
track currently active procedures

push information about an activation at the procedure entry
pop the information when the activation ends, that is, at the
return from the call

Example

let

function g(): int = (42)

function f(): int = g()

function main() = (g(); f();)

in

main()

end

main main

Example

let

function g(): int = (42)

function f(): int = g()

function main() = (g(); f();)

in

main()

end

main

g

main
g

Example

let

function g(): int = (42)

function f(): int = g()

function main() = (g(); f();)

in

main()

end

main

g

main

Example

let

function g(): int = (42)

function f(): int = g()

function main() = (g(); f();)

in

main()

end

main

g f

main

f

Example

let

function g(): int = (42)

function f(): int = g()

function main() = (f(); g())

in

main()

end

main

g f

g

main

f
g

Revised Memory Layout

Code

Stack

Low Address

High Address

Memory

Activation Records

The information needed to manage a single procedure
activation is called an activation record (AR) or a stack frame

If a procedure F calls G , then G ’s activation record contains a
mix of information about F and G

What is in G ’s AR when F calls G?

F is “suspended” until G completes, at which point F
resumes.

G ’s AR contains information needed to resume execution of F

G ’s AR may also contain:

G ’s return value (needed by F)
Actual parameters to G (supplied by F)
Space for G ’s local variables

The Contents of a Typical AR for G

Space for G ’s return value

Actual parameters

(Optional) Control link, a pointer to the previous activation
record

(Optional) Access link for access to non-local names; points
to the AR of the function that statically contains G

Machine status prior to calling G

return address, values of registers, and program counter
local variables

Other temporary values used during evaluation

Example 2

let

function g(): int = (42)

function f(x:int): int =

if x = 0 then g()

else f(x-1) (**)

function main() = f(3) (*)

in

main()

end

AR for f

result

argument

control link

return address

Stack After Two Calls to f

〈 result 〉

3

(*)

〈 result 〉

2

(**)

main

f

f

Notes

main has no argument or local variables and returns no result;
its AR is not interesting

(*) and (**) are return addresses (continuation points) of
the invocations of f

The return address is where execution resumes after a
procedure call finishes

This is only one of many possible AR designs

The Main Point

The compiler must determine, at compile-time, the layout of
activation records and generate code that correctly accesses
locations in the activation record

Key point: the AR layout and the code generator must be
designed together

Stack After Second Call to f Returns

〈 result 〉

3

(*)

42

2

(**)

main

f

f

Discussion

The advantage of placing the return value first in an AR is
that the caller can find it at a fixed offset from its own AR

There is nothing special about this run-time organization

Can rearrange order of frame elements
Can divide caller/callee responsibilities
An organization is better if it improves execution speed or
simplifies code generation

It is beneficial for a compiler to hold as much of the AR as
possible in registers

Storage Allocation Strategies for Activation Records

Static Allocation (Fortran 77)

Storage for all data objects is laid out at compile time
Can only be used if the size of data objects and constraints on
their position in memory can be resolved at compile time
Recursive procedures are restricted since all activations of a
procedure must share the same locations for local names

Storage Allocation Strategies for Activation Records

Stack Allocation (Pascal, C)

Storage is organized as a stack
Activation record pushed when activation begins and popped
when it ends
Cannot be used if the values of local names must be retained
when the evaluation ends or if the called invocation outlives
the caller

Heap Allocation (Lisp, ML)

Activation records may be allocated and deallocated in any
order
Some form of garbage collection is needed to reclaim free space

Globals

All references to a global variable point to the same object; a
global cannot be stored in an activation record

Globals are assigned a fixed address once; variables with fixed
addresses are “statically allocated”

Depending on the language, there may be other statically
allocated values

Memory Layout with Static Data

Code

Global & Static Data

Stack

Low Address

High Address

Memory

Heap Storage

A value that outlives the procedure that creates it cannot be
kept in the activation record

Languages with dynamically allocated data use a heap to
store dynamic data

Review of Runtime Organization

The code area contains object code; for most languages, fixed
size and read only

The static area contains data (not code) with fixed addresses;
fixed size my be readable or writable

The stack contains an AR for each currently active procedure;
each AR usually has a fixed size

The heap contains all other data

Notes

Both the heap and the stack grow

We must take care so that they do not grow into each other

Solution: start the heap and the stack at opposite ends of
memory and let them grow towards each other

Memory Layout with Heap

Code

Global & Static Data

Stack

Heap

Low Address

High Address

Memory

Data Layout

Low-level details of computer architecture are important in
laying out data for correct code and maximum performance

One of these concerns is data alignment

most modern machines are 32 or 64 bit; this defines a word
data is word-aligned if it begins at a word boundary
Most machines have some alignment restrictions

