CSC 425 - Principles of Compiler Design |

Run-time Environments

Status

m We have covered the front-end phases
m Lexical analysis
m Parsing
m Semantic analysis
m Next are the back-end phases
m Code generation
m Optimization
m Register allocation
m Instruction scheduling

m In this course, we will examine code generation

Run-time Environments

m Before discussing code generation, we need to understand
what we are trying to generate

m There are a number of standard techniques for structuring
executable code that are widely used.

Outline

m Management of run-time resources

m Correspondence between static (compile-time) and dynamic
(run-time) structures

m Storage organization

Run-time Resources

m Execution of a program is initially under the control of the
operating system (OS)
m When a program is invoked:
m The OS allocates space for the program
m The code is loaded into part of this space
m The OS jumps to the entry point of the program, that is, to
the beginning of the “"main” function

Memory Layout

Low Address

Code

Memory

Other Space

High Address

Notes

m By tradition, pictures of run-time memory organization have:

m Low addresses at the top
m High addresses at the bottom
m Lines delimiting areas for different kinds of data

m These pictures are simplifications
m For example, not all memory need be contiguous

Organization of Code Space

m Usually, code is generated one function at a time; the code
area has the form:

entry point
Code for function 1 .

entry point
Code for function 2

entry point
Code for function n

m Careful layout of code within a function can improve
instruction-cache utilization and give better performance

m Careful attention in the order in which functions are processed
can also improve instruction-cache utilization

What is Other Space?

m Holds all data needed for the program'’s execution
m Other space is data space

m Compiler is responsible for:

m generating code
m orchestrating the use of the data area

Code Generation Goals

m Two main goals:
m Correctness
m Speed
m Most complications in code generation come from trying to be
fast as well as correct

Assumptions about Flow of Control

m (1) Execution is sequential; at each step, control is at some
specific program point and moves from one point to another
in a well-defined order

m (2) When a procedure is called, control eventually returns to

the point immediately following the place where the call was
made

m Question: do these assumptions always hold?

Language Issues that Affect the Compiler

Can procedures be recursive?

What happens to the values of the locals on return from a
procedure?

Can a procedure refer to non-local variables?

How are parameters to a procedure passed?

Can procedures be passed as parameters?

Can procedures be returned as results?

Can storage be allocated dynamically under program control?

Must storage be deallocated explicitly?

Activations

m An invocation of procedure P is an activation of P
m The lifetime of an activation of P is:

m All the steps to execute P
m Including all the steps in procedures that P calls

Lifetimes of Variables

m The lifetime of a variable x is the portion of execution in
which x is defined
m Note that:

m Lifetime is a dynamic (run-time) concept
m Scope is (usually) a static concept

Activation Trees

m Assumption (2) requires that when P calls Q, then Q returns
before P does

m Lifetimes of procedure activations are thus either disjoint or
properly nested

m Activation lifetimes can be depicted as a tree

Example 1

let
function g(): int = (42)
function f£(): int = g()
function main() = (g(O; £0);)
in
main ()
end

Example 2

let
function g(): int = (42)
function f(x:int): int =
if x = 0 then g()
else f(x-1)
function main() = f(3)
in
main ()
end

m What is the activation tree for this example?

Notes

m The activation tree depends on run-time behavior

m The activation tree may be different for every program input

m Since activations are properly nested, a (control) stack can
track currently active procedures

m push information about an activation at the procedure entry
m pop the information when the activation ends, that is, at the
return from the call

Example

let
function g(): int = (42)
function f(): int = g()
function main() = (gO; £0O;)
in
main ()
end

main main

Example

let
function g(): int (42)
function £(): int = g()
function main() = (g(O; £0O);)
in

main ()
end

main main

— :

g

Example

let
function g(): int = (42)
function f(): int = g()
function main() = (gO; £0O;)
in
main ()
end

main main

g

let

function g():
function f():

Example

int
int

function main() =

in
main ()
end

main

(42)
g

(g3

N

g

f

£0O3;)

main

Example

let
function g(): int = (42)
function f(): int = g()
function main() = (£0O; gO))
in
main ()
end

main main

Memory

Revised Memory Layout

Code

Stack

Low Address

High Address

Activation Records

m The information needed to manage a single procedure
activation is called an activation record (AR) or a stack frame

m If a procedure F calls G, then G's activation record contains a
mix of information about F and G

What is in G's AR when F calls G?

m F is “suspended” until G completes, at which point F
resumes.

m G's AR contains information needed to resume execution of F

m G's AR may also contain:

m G's return value (needed by F)
m Actual parameters to G (supplied by F)
m Space for G's local variables

The Contents of a Typical AR for G

Space for G's return value
Actual parameters

(Optional) Control link, a pointer to the previous activation
record
(Optional) Access link for access to non-local names; points
to the AR of the function that statically contains G
Machine status prior to calling G

m return address, values of registers, and program counter

m local variables

Other temporary values used during evaluation

Example 2

let
function g(): int = (42)
function f(x:int): int =
if x = 0 then gQ)
else f(x-1) (*x)

function main() = £(3) (%)
in
main ()
end
m AR for £
result
argument
control link
return address

Stack After Two Calls to

main

f (result)

3

(*)

f (result)

2

()

Notes

main has no argument or local variables and returns no result;
its AR is not interesting

(x) and (%) are return addresses (continuation points) of
the invocations of £

The return address is where execution resumes after a
procedure call finishes

This is only one of many possible AR designs

The Main Point

m The compiler must determine, at compile-time, the layout of
activation records and generate code that correctly accesses
locations in the activation record

m Key point: the AR layout and the code generator must be
designed together

Stack After Second Call to £ Returns

main

f (result)

3

(%)

()

Discussion

m The advantage of placing the return value first in an AR is
that the caller can find it at a fixed offset from its own AR
m There is nothing special about this run-time organization

m Can rearrange order of frame elements

m Can divide caller/callee responsibilities

m An organization is better if it improves execution speed or
simplifies code generation

m It is beneficial for a compiler to hold as much of the AR as
possible in registers

Storage Allocation Strategies for Activation Records

m Static Allocation (Fortran 77)

m Storage for all data objects is laid out at compile time

m Can only be used if the size of data objects and constraints on
their position in memory can be resolved at compile time

m Recursive procedures are restricted since all activations of a
procedure must share the same locations for local names

Storage Allocation Strategies for Activation Records

m Stack Allocation (Pascal, C)
m Storage is organized as a stack
m Activation record pushed when activation begins and popped
when it ends
m Cannot be used if the values of local names must be retained
when the evaluation ends or if the called invocation outlives
the caller

m Heap Allocation (Lisp, ML)
m Activation records may be allocated and deallocated in any

order
m Some form of garbage collection is needed to reclaim free space

Globals

m All references to a global variable point to the same object; a
global cannot be stored in an activation record

m Globals are assigned a fixed address once; variables with fixed
addresses are “statically allocated”

m Depending on the language, there may be other statically
allocated values

Memory Layout with Static Data

Low Address

Code

Global & Static Data

Memory Stack

|

High Address

Heap Storage

m A value that outlives the procedure that creates it cannot be
kept in the activation record

m Languages with dynamically allocated data use a heap to
store dynamic data

Review of Runtime Organization

m The code area contains object code; for most languages, fixed
size and read only

m The static area contains data (not code) with fixed addresses;
fixed size my be readable or writable

m The stack contains an AR for each currently active procedure;
each AR usually has a fixed size

m The heap contains all other data

Notes

m Both the heap and the stack grow
m We must take care so that they do not grow into each other

m Solution: start the heap and the stack at opposite ends of
memory and let them grow towards each other

Memory Layout with Heap

Low Address

Code

Global & Static Data

Stack

Memory

Heap

High Address

Data Layout

m Low-level details of computer architecture are important in
laying out data for correct code and maximum performance

m One of these concerns is data alignment
m most modern machines are 32 or 64 bit; this defines a word
m data is word-aligned if it begins at a word boundary
m Most machines have some alignment restrictions

