
CSC 425 - Principles of Compiler Design I

Semantic Analysis



Outline

The role of semantic analysis in a compiler

Scope

static vs. dynamic scoping
implementation: symbol tables

Types

static analyses that detect type errors
statically vs. dynamically typed languages



The Compiler Front-End

Lexical analysis: the program is lexically well-formed

tokens are legal
detects inputs with illegal tokens

Parsing

declarations have correct structure, expressions are
syntactically valid, etc.
detects inputs with ill-formed syntax

Semantic analysis

last ”front end” compilation phase
catches all remaining errors



Beyond Syntax Errors

Example C program
semantic errors:

Undeclared identifier
Multiple declarations
of identifier
Index out of bounds
Incorrect number or
types of arguments to
function call
Incompatible types for
operation
A break statement
outside of a loop
A goto with no label

foo(int a, char *s){...}

int bar() {

int f[3];

int i, j, k;

char q, *p;

float k;

foo(f[6], 10, j);

break;

i->val = 42;

j = m + k;

printf ("%s,%s.\n",p,q);

goto label42;

}



Why Have a Separate Semantic Analysis Phase?

Parsing cannot catch some errors

Some language constructs are not context-free

Example: identifier declaration and use
An abstract version of the problem is:

L = {wcw | w ∈ (a + b)∗}

The first w represents the identifier’s declaration; the second
w represents a use of the identifier
This language is not context-free



What Does Semantic Analysis Do?

Performs checks beyond syntax of many kinds

Examples:

All used identifiers are declared
Identifiers declared only once
Types
Procedures and functions defined only once
Procedures and functions used with the correct number and
type of arguments

The requirements depend on the language



Semantic Processing: Syntax-Directed Translation

Basic idea: associate information with language constructs by
attaching attributes to the grammar symbols that represent
these constructs

Values for attributes are computed using semantic rules
associated with grammar productions
An attribute can represent anything (reasonable) that we
choose, for example, a string, number type, etc.
A parse tree showing the values of attributes at each node is
called an annotated parse tree



Attributes of an Identifier

Name: character string (obtained from scanner)

Scope: program region in which the identifier is valid

Type:

integer
array

number of dimensions
upper and lower bounds for each dimension
type of elements

function

number and type of parameters (in order)
type of returned value
size of stack frame



Scope

The scope of an identifier (a binding of a name to the entity it
names) is the textual part of the program in which the binding
is active

Scope matches identifier declarations with uses, an important
static analysis step in most languages

The scope of an identifier is the portion of a program in which
that identifier is accessible

The same identifier may refer to different things in different
parts of the program

An identifier may have restricted scope



Static vs. Dynamic Scope

Most languages have static (lexical) scope

Scope depends only on the physical structure of program text,
not its run-time behavior
The determination of scope is made by the compiler

A few languages are dynamically scoped

Scope depends on execution of the program



Static Scoping Example

Uses of x refer to the closest enclosing function

let integer x := 0 in

{

x;

let integer x := 1 in

x;

x;

}



Dynamic Scope

A dynamically-scoped variable refers to the closest enclosing
binding in the execution of the program

Example: when invoking g(54) the result will be 42

g(y) = let integer a := 42 in f(3);

f(x) = a;



Static vs. Dynamic Scope

Example

program scopes(input , output );

var a: integer;

procedure first;

begin a := 1; end;

procedure second;

var a: integer;

begin first; end;

begin

a := 2; second; write(a);

end.

With static scope, the result is 1

With dynamic scope, the result is 2



Dynamic Scope Continued

With dynamic scope, bindings cannot always be resolved by
examining the program because they are dependent on calling
sequences

Dynamic scope rules are usually encountered in interpreted
languages

Usually these languages to not normally have static type
checking



Scope of Identifiers

In most programming languages identifier bindings are
introduced by

Function declarations (introduce function names)
Procedure definitions (introduce procedure names)
Identifier declarations (introduce identifiers)
Formal parameters (introduce identifiers)



Scope of Identifiers

Not all kinds of identifiers follow the most closely nested
scope rule

For example, function declarations

often cannot be nested
are globally visible throughout the program

In other words, a function name can be used before it is
defined



Example: Use Before Definition

foo (integer x)

{

integer y

y := bar(x)

...

}

bar (integer i): integer

{

...

}



Other Kinds of Scope

In object-oriented languages, method and attribute names
have more sophisticated (static) scope rules

A method may need not be defined in the class in which it is
used, but in some parent class

Methods may also be redefined (overridden)



Implementing the Most Closely Nested Rule

Much of semantic analysis can be expressed as a recursive
descent of an AST

Process an AST node n
Process the children of n
Finish processing node n

When preforming semantic analysis on a portion of the AST,
we need to know which identifiers are defined.



Implementing the Most Closely Nested Rule

Example: the scope of variable declarations is one subtree

let integer x := 42 in E

x can be used in subtree E



Symbol Tables

Purpose: to hold information about identifiers that is
computed at some point and looked up at later times during
compilation

Example information:

type of a variable
entry point for a function

Operations: insert, lookup, delete

Common implementations: linked lists, hash tables



Symbol Tables

Assuming static scope, consider again

let integer x := 42 in E

Idea:

before processing E, add a definition of x to the current
definitions, overriding any other definition of x
after processing E, remove the definition of x and, if needed,
restore old definition of x

A symbol table is a data structure that tracks the current
bindings of identifiers



A Simple Symbol Table Implementation

The structure is a stack

Operations

add symbol(x) push x and associated info, such as x’s type
on the stack
find symbol(x) search stack, starting from the top for x and
return the first occurrence of x found or null if not found
remove symbol() pop stack

Why does this work?



A Fancier Symbol Table

enter scope start/push a new nested scope

find symbol(x) finds current x (or null)

add symbol(x) add a symbol x to the table

check scope(x) true if x is defined in the current scope

exit scope() exit/pop the current scope



Function/Procedure Definitions

Function names can be used prior to their definition

We cannot check that for function names

using a symbol table
or even using one pass

Solution

pass 1: gather all function/procedure names
pass 2: do the checking

Semantic analysis requires multiple passes



Types

What is a type?

This is the subject of some debate
The notion varies from language to language

Consensus

A type is a set of values and
A set of operations on those values

Type errors arise when operations are performed on values
that do not support that operation



Types and Operations

Consider the assembly language fragment

addi $r1 , $r2 , $r3

What are the types of $r1, $r2, and $r3?

Certain operations are legal for values of each type

It does not make sense to add a function pointer and an
integer in C
It does make sense to add two integers
But, both have the same assembly language implementation



Type Systems

A language’s type system specifies which operations are valid
for which types

The goal of type checking is to ensure that operations are
used with the correct types

Type systems provide a concise formalization of the semantic
checking rules



What Can Types do For Us?

Allow for a more efficient compilation of programs

Allocate the correct amount of space for variables
Select the correct machine instructions

Statically detect certain kinds of errors

Memory errors (reading from an invalid pointer, etc.)
Violation of abstraction boundaries
Security and access rights violations



Type Checking Overview

Three kinds of languages

Statically typed: all or almost all checking of types is done as
part of compilation
Dynamically typed: almost all checking of types is done as part
of program execution
Untyped: no checking (machine code)



The Type Wars

Competing views on static vs. dynamic typing

Static typing proponents say:

Static checking catches many programming errors at compile
time
Avoids overhead of runtime type checks

Dynamic typing proponents say:

Static type systems are restrictive
Rapid protoyping is easier in a dynamic type system


