CSC 425 - Principles of Compiler Design |

Top-Down Parsing



Outline

Implementation of parsers
Two main approaches:

m Top-down
m Bottom-up

This lecture: Top-Down
m Easier to understand and program manually
Next time: Bottom-Up
m More powerful and used by most parser generators



Introduction to Top-Down Parsing

m Terminals are seen in order of appearance in the token stream:
t2, ts, te, tg, to

m The parse tree is constructed: from top to bottom and from
left to right



Recursive Descent Parsing

Consider the grammar

E-T+E|T
T —int|int+ T | (E)

and token stream: int(5) * int(2)
Start with the top-level non-terminal E

Try the rules for E in order



Recursive Descent Parsing

Try Eg — T1+ E
Try T — (E3)
m The left parenthesis does not match the token int(5)
Try Ty — int
m Matches, but + after T; does not match *
Try T1 — intx T)
m Matches and consumes two tokens

m Try T, — int matches, but + after T; does not
m Try T, — int * T3 but + does not match end-of-input

Has exhausted the choices for T»
m Backtrack to choice for Egy



Recursive Descent Parsing

6 Try EO — T
[@ Follow same steps as before for Ty

m and succeed with T; — int(5) * T, and T, — int(2)
m with the following parse tree



Recursive Descent Parsing: Notes

m Easy to implement by hand
m Somewhat inefficient due to backtracking

m Does not always work . ..



When Rescursive Descent Does Not Work

Consider a production S — Sa
And the following pseudo-code implementation

bool S1() { return S() && term(a); 1}
bool S() { return S1(); }

The function call S() gets into an infinite loop
A left-resursive grammar has a non-terminal S and production
S 3 Sa for some a

Recursive descent does not work in such cases



Elimination of Left Recursion

m Consider the left-recursive grammar
S—Salp

m S generates all strings starting with a 3 and followed by any
number of as

m This grammar can be rewritten using right-recursion

S B8
S —aS' e



Elimination of Left-Recursion

m In general

S—Sar|...|San|Bi| ... | Bm

m All strings derived from S start with one of 5y, ...

continue with several instances of ag, ..., a,

m Rewrite as

S—BS"|...| BmS
S —a1S | ... | anS e

, Bm and



General Left Recursion

m The grammar

S—Aa|d
A— S0

is also left-recursive because
+
S = SBa

m This left-recursion can also be eliminated (see a compilers text
for a general algorithm)



Summary of Recursive Descent

m Simple and general parsing strategy
m left-recursion must be eliminated first
m ... but that can be done automatically
m Unpopular because of backtracking (thought to be too
inefficient)

m In practice, backtracking is eliminated by restricting the
grammar



Predictive Parsers

m Like recursive descent, but the parser can “predict” which
production to use by looking at the next few tokens and does
not need to backtrack

m Predictive parsers accept LL(K) grammars

m L means left-to-right scan of input
m L means leftmost derivation
®m k means predict based on k tokens of lookahead

m In practice, LL(1) is used



LL(1) Languages

m In recursive descent, there may be multiple production choices
for each non-terminal and input token

m LL(1) means that there is only one production for each
non-terminal and input token

m Can be specified via 2D tables

m one dimension for the current non-terminal to expand
m one dimension for the next token
m a table entry contains one production



Predictive Parsing and Left Factoring

m Recall the grammar for arithmetic expressions

E-TH+E|T
T — (E)|int|intx T

m Harde to predict because:
m For T two productions start with int
m For E it is not clear how to predict
m A grammar must be left-factored before it is used for
predictive parsing



Left-Factoring Example

m Recall the grammar for arithmetic expressions

E-T+E|T
T — (E) | int |int+ T

m Factor out common prefixes of productions

E—-TX

X = +E |€
T—(E)|intY
Y —» T | ¢



LL(1) Parsing Table Example

m Left-factored grammar

E-TX

X —=+E |¢€

T = (E)|int Y
Y = T | e

m The LL(1) parsing table:

int x| 4 ( )19
E| TX TX
X +E €€
T |intY (E)
Y *T € €| €




LL(1) Parsing Table Example

m Consider the [E, int] entry
m If the current non-terminal is E and the next input is int, then
use production E -+ T X
m This production can generate an int in the first place
m Consider the [Y, +] entry
m If the current non-terminal is Y and the current input is +,
then eliminate Y
m Y can be followed by + only in a derivation in which Y — €
m Blank entries indicate error situations
m Consider the [E, %] entry
m There is no way to derive a string starting with * from
non-terminal E



Using Parsing Tables

m Method similar to recursive descent, except

m For each non-terminal S

m we look at the next token a

m and chose the production shown at [S, ]

m while (id == id) do while (id !'= id) do id = int

m We use a stack to keep track of pending non-terminals
m We reject when we encounter an error state

m We accept when we encounter end-of-input



LL(1) Parsing Algorithm

initialize stack = <S, $> and next
repeat
case stack of
<X, rest> if T[X, *next] = Y1
then stack := <Y1
else error ()
<t, rest> if t == *xnext++
then stack := <rest>
else error ()

until stack == <>

Yn
Yn rest>



LL(1) Parsing Example

Stack Input Action
ES$ intxint$ T X
TX$ int*int$ intY
intY X$ intxint$ terminal
Y X$ xint $ * T
*xTX$ xint $ terminal
TX$ int'$ intY
intY X$ int$ terminal
Y X$ $ €

X$ $ €

$ $ ACCEPT



Constructing Parsing Tables

m LL(1) languages are those defined by a parsing table for the
LL(1) algorithm
m No table entry can be multiply defined

m We want to generate parsing tables from context-free
grammars



Constructing Parsing Tables

m If A— «, where in the row of A do we place a?

m In the column of t where t can start a string derived from «
ma—tf
m we say that t € First(a)

m In the column of t if « is € and t can follow an A

S5 BALS
m we say t € Follow(A)



Computing First Sets

m Definition: First(X) = {t| = ta}U{e|X 5 €}
m Algorithm sketch
First(t) = {t}
€ € First(X) if X — € is a production
€ € First(X) if X — Ay... A, and € € First(A;) for each
1<i<n
First(a) C First(X) if X — A;...Apa and € € First(A;) for
each1<i<n



First Sets Example

m Recall the grammar

E—-TX
X = +E |e
T—(E)|intY
Y =T | e
m First sets
First(() ={(}
First(+) = {+}
First(int) = {int}
First(E) = {int, (}
First(Y) = {x, €}

First())=1{)}
First(x) = {x}
First(T) = {int, (}
First(X) = {+, €}



Computing Follow Sets

m Definition: Follow(X) = {t| = B X t 6}
m Intuition
m If X = A B, then First(B) C Follow(A) and
Follow(X) C Follow(B)
m Also, if B = ¢, then Follow(X) C Follow(A)
m IF S is the start symbol, then $ € Follow(S)

m Algorithm sketch
$ € Follow(S)
First(8) — {e} C Follow(X) for each production A — a X 8
Follow(A) C Follow(X) for each production A — « X 3 where
€ € First(B)



Follow Sets Example

m Recall the grammar

E—-TX

X = +E |e

T—(E)|intY

Y =T | e

m First sets

Follow( () = {int, (} Follow() ) ={+,),$}
Follow(+) = {int, (} Follow () = {int, (}
Follow(int) = {x,+,),$} Follow(T) = {+,),%}
Follow(E) = {),$} Follow(X) = {$,)}
Follow(Y) = {+,), %}



Constructing LL(1) Parsing Tables

m Construct a parsing table T for context-free grammar G
m For each production A — « in G do:

m For each terminal t € First(a) do T[A, t] = «
m If € € First(«), then for each t € Follow(A) do T[A,t] = «
m If € € First(a) and $ € Follow(A) do T[A,$] = «



Notes on LL(1) Parsing Tables

If any entry is multiply defined, then G is not LL(1)

m If G is ambiguous

m If G is left recursive

m If G is not left factored

m And in other cases as well

Most programming languages are not LL(1)
There are tools that build LL(1) tables

For some grammars, predictive parsing is a simple parsing
strategy



