
CSC 425 - Principles of Compiler Design I

Top-Down Parsing

Outline

Implementation of parsers

Two main approaches:

Top-down
Bottom-up

This lecture: Top-Down

Easier to understand and program manually

Next time: Bottom-Up

More powerful and used by most parser generators

Introduction to Top-Down Parsing

Terminals are seen in order of appearance in the token stream:
t2, t5, t6, t8, t9

The parse tree is constructed: from top to bottom and from
left to right

1

t2 3

4

t5 t6

7 t8

t9

Recursive Descent Parsing

Consider the grammar

E → T + E | T
T → int | int ∗ T | (E)

and token stream: int(5) ∗ int(2)

Start with the top-level non-terminal E

Try the rules for E in order

Recursive Descent Parsing

1 Try E0 → T1 + E2

2 Try T1 → (E3)

The left parenthesis does not match the token int(5)

3 Try T1 → int

Matches, but + after T1 does not match ∗
4 Try T1 → int ∗ T2

Matches and consumes two tokens

Try T2 → int matches, but + after T1 does not
Try T2 → int ∗ T3 but + does not match end-of-input

5 Has exhausted the choices for T2

Backtrack to choice for E0

Recursive Descent Parsing

6 Try E0 → T1

6 Follow same steps as before for T1

and succeed with T1 → int(5) ∗ T2 and T2 → int(2)
with the following parse tree

E0

T1

int(5) ∗ T2

int(2)

Recursive Descent Parsing: Notes

Easy to implement by hand

Somewhat inefficient due to backtracking

Does not always work . . .

When Rescursive Descent Does Not Work

Consider a production S → Sa

And the following pseudo-code implementation

bool S1() { return S() && term(a); }

bool S() { return S1(); }

The function call S() gets into an infinite loop

A left-resursive grammar has a non-terminal S and production

S
+→ Sα for some α

Recursive descent does not work in such cases

Elimination of Left Recursion

Consider the left-recursive grammar

S → Sα | β

S generates all strings starting with a β and followed by any
number of αs

This grammar can be rewritten using right-recursion

S → βS ′

S ′ → αS ′ | ε

Elimination of Left-Recursion

In general

S → Sα1 | . . . | Sαn | β1 | . . . | βm

All strings derived from S start with one of β1, . . . , βm and
continue with several instances of α1, . . . , αn

Rewrite as

S → β1S
′ | . . . | βmS ′

S ′ → α1S
′ | . . . | αnS

′ | ε

General Left Recursion

The grammar

S → Aα | δ
A→ Sβ

is also left-recursive because

S
+→ Sβα

This left-recursion can also be eliminated (see a compilers text
for a general algorithm)

Summary of Recursive Descent

Simple and general parsing strategy

left-recursion must be eliminated first
. . . but that can be done automatically

Unpopular because of backtracking (thought to be too
inefficient)

In practice, backtracking is eliminated by restricting the
grammar

Predictive Parsers

Like recursive descent, but the parser can “predict” which
production to use by looking at the next few tokens and does
not need to backtrack

Predictive parsers accept LL(K) grammars

L means left-to-right scan of input
L means leftmost derivation
k means predict based on k tokens of lookahead

In practice, LL(1) is used

LL(1) Languages

In recursive descent, there may be multiple production choices
for each non-terminal and input token

LL(1) means that there is only one production for each
non-terminal and input token

Can be specified via 2D tables

one dimension for the current non-terminal to expand
one dimension for the next token
a table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar for arithmetic expressions

E → T + E | T
T → (E) | int | int ∗ T

Harde to predict because:

For T two productions start with int
For E it is not clear how to predict

A grammar must be left-factored before it is used for
predictive parsing

Left-Factoring Example

Recall the grammar for arithmetic expressions

E → T + E | T
T → (E) | int | int ∗ T

Factor out common prefixes of productions

E → T X

X → +E | ε
T → (E) | int Y
Y → ∗T | ε

LL(1) Parsing Table Example

Left-factored grammar

E → T X

X → +E | ε
T → (E) | int Y
Y → ∗T | ε

The LL(1) parsing table:

int ∗ + () $

E T X T X
X +E ε ε
T int Y (E)
Y ∗T ε ε ε

LL(1) Parsing Table Example

Consider the [E , int] entry

If the current non-terminal is E and the next input is int, then
use production E → T X
This production can generate an int in the first place

Consider the [Y ,+] entry

If the current non-terminal is Y and the current input is +,
then eliminate Y
Y can be followed by + only in a derivation in which Y → ε

Blank entries indicate error situations

Consider the [E , ∗] entry
There is no way to derive a string starting with ∗ from
non-terminal E

Using Parsing Tables

Method similar to recursive descent, except

For each non-terminal S
we look at the next token a
and chose the production shown at [S , a]
while (id == id) do while (id != id) do id = int

We use a stack to keep track of pending non-terminals

We reject when we encounter an error state

We accept when we encounter end-of-input

LL(1) Parsing Algorithm

initialize stack = <S, $> and next

repeat

case stack of

<X, rest > : if T[X, *next] = Y1 ... Yn

then stack := <Y1 ... Yn rest >

else error()

<t, rest > : if t == *next++

then stack := <rest >

else error()

until stack == <>

LL(1) Parsing Example

Stack Input Action

E $ int ∗ int $ T X
T X $ int ∗ int $ int Y
int Y X $ int ∗ int $ terminal
Y X $ ∗int $ ∗ T
∗ T X $ ∗int $ terminal
T X $ int $ int Y
int Y X $ int $ terminal
Y X $ $ ε
X $ $ ε
$ $ ACCEPT

Constructing Parsing Tables

LL(1) languages are those defined by a parsing table for the
LL(1) algorithm

No table entry can be multiply defined

We want to generate parsing tables from context-free
grammars

Constructing Parsing Tables

If A→ α, where in the row of A do we place α?

In the column of t where t can start a string derived from α

α→ t β
we say that t ∈ First(α)

In the column of t if α is ε and t can follow an A

S
∗→ β A t δ

we say t ∈ Follow(A)

Computing First Sets

Definition: First(X) = {t | ∗→ tα} ∪ {ε | X ∗→ ε}
Algorithm sketch

1 First(t) = {t}
2 ε ∈ First(X) if X → ε is a production
3 ε ∈ First(X) if X → A1 . . .An and ε ∈ First(Ai) for each

1 ≤ i ≤ n
4 First(α) ⊆ First(X) if X → A1 . . .Anα and ε ∈ First(Ai) for

each 1 ≤ i ≤ n

First Sets Example

Recall the grammar

E → T X

X → +E | ε
T → (E) | int Y
Y → ∗T | ε

First sets

First(() = { (} First()) = {) }
First(+) = {+} First(∗) = {∗}
First(int) = {int} First(T) = {int, (}
First(E) = {int, (} First(X) = {+, ε}
First(Y) = {∗, ε}

Computing Follow Sets

Definition: Follow(X) = {t | ∗→ β X t δ}
Intuition

If X → A B, then First(B) ⊆ Follow(A) and
Follow(X) ⊆ Follow(B)

Also, if B
∗→ ε, then Follow(X) ⊆ Follow(A)

IF S is the start symbol, then $ ∈ Follow(S)

Algorithm sketch

1 $ ∈ Follow(S)
2 First(β)− {ε} ⊆ Follow(X) for each production A→ α X β
3 Follow(A) ⊆ Follow(X) for each production A→ α X β where
ε ∈ First(β)

Follow Sets Example

Recall the grammar

E → T X

X → +E | ε
T → (E) | int Y
Y → ∗T | ε

First sets

Follow(() = {int, (} Follow()) = {+,), $}
Follow(+) = {int, (} Follow(∗) = {int, (}
Follow(int) = {∗,+,), $} Follow(T) = {+,), $}
Follow(E) = {), $} Follow(X) = {$,)}
Follow(Y) = {+,), $}

Constructing LL(1) Parsing Tables

Construct a parsing table T for context-free grammar G

For each production A→ α in G do:

For each terminal t ∈ First(α) do T [A, t] = α
If ε ∈ First(α), then for each t ∈ Follow(A) do T [A, t] = α
If ε ∈ First(α) and $ ∈ Follow(A) do T [A, $] = α

Notes on LL(1) Parsing Tables

If any entry is multiply defined, then G is not LL(1)

If G is ambiguous
If G is left recursive
If G is not left factored
And in other cases as well

Most programming languages are not LL(1)

There are tools that build LL(1) tables

For some grammars, predictive parsing is a simple parsing
strategy

