CSC 425 - Principles of Compiler Design I

Top-Down Parsing

Outline

Implementation of parsers

- Two main approaches:
 - Top-down
 - Bottom-up
- This lecture: Top-Down
 - Easier to understand and program manually
- Next time: Bottom-Up
 - More powerful and used by most parser generators

Introduction to Top-Down Parsing

- Terminals are seen in order of appearance in the token stream: *t*₂, *t*₅, *t*₆, *t*₈, *t*₉
- The parse tree is constructed: from top to bottom and from left to right

Recursive Descent Parsing

Consider the grammar

 $E \rightarrow T + E \mid T$ $T \rightarrow int \mid int * T \mid (E)$

- and token stream: int(5) * int(2)
- Start with the top-level non-terminal *E*
- Try the rules for E in order

Recursive Descent Parsing

1 Try $E_0 \rightarrow T_1 + E_2$ 2 Try $T_1 \rightarrow (E_3)$ • The left parenthesis does not match the token int(5)3 Try $T_1 \rightarrow int$ • Matches, but + after T_1 does not match * 4 Try $T_1 \rightarrow int * T_2$ Matches and consumes two tokens Try $T_2 \rightarrow int$ matches, but + after T_1 does not **Try** $T_2 \rightarrow int * T_3$ but + does not match end-of-input 5 Has exhausted the choices for T_2 • Backtrack to choice for E_0

Recursive Descent Parsing

6 Try $E_0 \rightarrow T_1$

6 Follow same steps as before for T_1

- and succeed with $T_1 \rightarrow int(5) * T_2$ and $T_2 \rightarrow int(2)$
- with the following parse tree

Recursive Descent Parsing: Notes

- Easy to implement by hand
- Somewhat inefficient due to backtracking
- Does not always work ...

When Rescursive Descent Does Not Work

- Consider a production $S \rightarrow Sa$
- And the following pseudo-code implementation

```
bool S1() { return S() && term(a); }
bool S() { return S1(); }
```

- The function call S() gets into an infinite loop
- A *left-resursive grammar* has a non-terminal S and production $S \xrightarrow{+} S \alpha$ for some α
- Recursive descent does not work in such cases

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S\alpha \mid \beta$$

- S generates all strings starting with a β and followed by any number of $\alpha {\rm s}$
- This grammar can be rewritten using right-recursion

$$S \to \beta S'$$
$$S' \to \alpha S' \mid \epsilon$$

Elimination of Left-Recursion

In general

$$S \to S\alpha_1 \mid \ldots \mid S\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$$

All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$

Rewrite as

$$S \to \beta_1 S' \mid \dots \mid \beta_m S'$$
$$S' \to \alpha_1 S' \mid \dots \mid \alpha_n S' \mid \epsilon$$

General Left Recursion

The grammar

$$S \to A\alpha \mid \delta$$
$$A \to S\beta$$

is also left-recursive because

$$S \xrightarrow{+} S \beta \alpha$$

 This left-recursion can also be eliminated (see a compilers text for a general algorithm)

Summary of Recursive Descent

- Simple and general parsing strategy
 - left-recursion must be eliminated first
 - \blacksquare ... but that can be done automatically
- Unpopular because of backtracking (thought to be too inefficient)
- In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

- Like recursive descent, but the parser can "predict" which production to use by looking at the next few tokens and does not need to backtrack
- Predictive parsers accept *LL(K)* grammars
 - L means left-to-right scan of input
 - L means leftmost derivation
 - k means predict based on k tokens of lookahead
- In practice, LL(1) is used

LL(1) Languages

- In recursive descent, there may be multiple production choices for each non-terminal and input token
- LL(1) means that there is only one production for each non-terminal and input token
- Can be specified via 2D tables
 - one dimension for the current non-terminal to expand
 - one dimension for the next token
 - a table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar for arithmetic expressions

 $E \rightarrow T + E \mid T$ $T \rightarrow (E) \mid int \mid int * T$

- Harde to predict because:
 - For *T* two productions start with *int*
 - For *E* it is not clear how to predict
- A grammar must be left-factored before it is used for predictive parsing

Left-Factoring Example

Recall the grammar for arithmetic expressions

$$E
ightarrow T + E \mid T$$

 $T
ightarrow (E) \mid int \mid int * T$

Factor out common prefixes of productions

$$E \rightarrow T X$$

$$X \rightarrow +E \mid \epsilon$$

$$T \rightarrow (E) \mid int Y$$

$$Y \rightarrow *T \mid \epsilon$$

LL(1) Parsing Table Example

Left-factored grammar

$$E \to T X$$

$$X \to +E \mid \epsilon$$

$$T \to (E) \mid int Y$$

$$Y \to *T \mid \epsilon$$

■ The *LL*(1) parsing table:

	int	*	+	()	\$
Ε	ΤХ			ΤХ		
Х			+E		ϵ	ϵ
Т	int Y			(E)		
Y		* <i>T</i>	ϵ		ϵ	ϵ

LL(1) Parsing Table Example

- Consider the [*E*, *int*] entry
 - If the current non-terminal is E and the next input is *int*, then use production $E \rightarrow T X$
 - This production can generate an *int* in the first place
- Consider the [Y, +] entry
 - If the current non-terminal is Y and the current input is +, then eliminate Y
 - Y can be followed by + only in a derivation in which $Y \rightarrow \epsilon$
- Blank entries indicate error situations
 - Consider the [*E*, *] entry
 - There is no way to derive a string starting with * from non-terminal E

Using Parsing Tables

Method similar to recursive descent, except

- For each non-terminal S
- we look at the next token a
- and chose the production shown at [S, a]
- while (id == id) do while (id != id) do id = int
- We use a stack to keep track of pending non-terminals
- We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

LL(1) Parsing Example

Stack	Input	Action	
E \$	int * int \$	ТХ	
T X \$	int * int \$	int Y	
intYX\$	int * int \$	terminal	
Y X \$	*int \$	* T	
* T X \$	*int \$	terminal	
T X \$	int \$	int Y	
int Y X \$	int \$	terminal	
Y X \$	\$	ϵ	
X \$	\$	ϵ	
\$	\$	ACCEPT	

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined
- We want to generate parsing tables from context-free grammars

Constructing Parsing Tables

- If $A \rightarrow \alpha$, where in the row of A do we place α ?
- \blacksquare In the column of t where t can start a string derived from α
 - $\bullet \ \alpha \to t \ \beta$
 - we say that $t \in First(\alpha)$
- In the column of t if α is ϵ and t can follow an A

■
$$S \xrightarrow{*} \beta A t \delta$$

■ we say $t \in Follow(A)$

Computing First Sets

- Definition: $First(X) = \{t \mid \stackrel{*}{\rightarrow} t\alpha\} \cup \{\epsilon \mid X \stackrel{*}{\rightarrow} \epsilon\}$
- Algorithm sketch

1 *First*(
$$t$$
) = { t }

- 2 $\epsilon \in First(X)$ if $X \to \epsilon$ is a production
- 3 $\epsilon \in First(X)$ if $X \to A_1 \dots A_n$ and $\epsilon \in First(A_i)$ for each $1 \le i \le n$
- 4 $First(\alpha) \subseteq First(X)$ if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$ for each $1 \le i \le n$

First Sets Example

Recall the grammar

$$E \to T X$$

$$X \to +E \mid \epsilon$$

$$T \to (E) \mid int Y$$

$$Y \to *T \mid \epsilon$$

First sets

$$\begin{array}{ll} \textit{First(())} = \{ (\} & \textit{First())} = \{) \} \\ \textit{First(+)} = \{ + \} & \textit{First(*)} = \{ * \} \\ \textit{First(int)} = \{ int \} & \textit{First(X)} = \{ int, (\} \\ \textit{First(E)} = \{ int, (\} & \textit{First(X)} = \{ +, \epsilon \} \\ \textit{First(Y)} = \{ *, \epsilon \} \end{array}$$

Computing Follow Sets

- Definition: $Follow(X) = \{t \mid \stackrel{*}{\rightarrow} \beta X t \delta\}$
- Intuition
 - If $X \to A B$, then $First(B) \subseteq Follow(A)$ and $Follow(X) \subseteq Follow(B)$
 - Also, if $B \xrightarrow{*} \epsilon$, then $Follow(X) \subseteq Follow(A)$
 - IF S is the start symbol, then $\{ \in Follow(S) \}$
- Algorithm sketch
 - \$ ∈ Follow(S)
 First(β) {ε} ⊆ Follow(X) for each production A → α X β
 Follow(A) ⊆ Follow(X) for each production A → α X β where ε ∈ First(β)

Follow Sets Example

Recall the grammar

$$E \to T X$$

$$X \to +E \mid \epsilon$$

$$T \to (E) \mid int Y$$

$$Y \to *T \mid \epsilon$$

First sets

$$Follow(() = \{int, (\} \\Follow(+) = \{int, (\} \\Follow(int) = \{*, +,), \$\} \\Follow(E) = \{\}, \$\} \\Follow(Y) = \{+, \}, \$\}$$

$$\begin{array}{l} \textit{Follow())} = \{+, \}, \$ \\ \textit{Follow(*)} = \{\textit{int, (}\} \\ \textit{Follow(T)} = \{+, \}, \$ \\ \textit{Follow(X)} = \{\$, \} \end{array}$$

Constructing LL(1) Parsing Tables

- Construct a parsing table T for context-free grammar G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$, then for each $t \in Follow(A)$ do $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do $T[A,\$] = \alpha$

Notes on LL(1) Parsing Tables

If any entry is multiply defined, then G is not LL(1)

- If G is ambiguous
- If G is left recursive
- If G is not left factored
- And in other cases as well
- Most programming languages are not *LL*(1)
- There are tools that build LL(1) tables
- For some grammars, predictive parsing is a simple parsing strategy