
CSC 425 - Principles of Compiler Design I

Type Checking



Outline

General properties of type systems

Types in programming languages

Notation for type rules

logical rules of inference

Common type rules



Static Checking

Static checking refers to the compile-time checking of
programs in order to ensure that the semantic conditions of
the language are being followed

Examples of static checks include:

Type checks
Control flow checks
Uniqueness checks
Name related checks



Static Checking

Control flow checks: statement that cause the flow of control
to leave a construct must have some place where control can
be transferred; for example, break statements in C

Uniqueness checks: a language may dictate that in some
contexts, an entity can be defined exactly once; for example,
identifier declarations, labels, values in case expressions

Name related checks: sometimes the same name must appear
two or more times; for example, in Ada a loop or block can
have a name that must then appear both at the beginning
and at the end



Types and Type Checking

A type is a set of values together with a set of operations that
can be performed on them

The purpose of type checking is to verify that operations
performed on a value are in fact permissible

The type of an identifier is typically available from
declarations, but we may have to keep track of the type of
intermediate expressions



Type Expressions and Type Constructors

A language usually provides a set of base types that it
supports together with ways to construct other types using
type constructors

Through type expressions we are able to represent types that
are defined in a program



Type Expressions

A base type is a type expression

A type name is a type expression

A type constructor applied to type expressions is a type
expression, for example:

arrays: if T is a type expression and I is a range of integers,
then array(I ,T ) is a type expression
records: if T1, . . . ,Tn are type expressions and f1, . . . , fn are
field names, then record((f1,T1), . . . , (fn,Tn)) is a type
expression
pointers: if T is a type expression, then pointer(T ) is a type
expression
functions: if T1, . . . ,Tn and T are type expressions, then so is
(T1, . . . ,Tn) → T



Notions of Type Equivalence

Name equivalence: in many languages, for example, Pascal,
types can be given names. Name equivalence views each
distinct name as a distinct type. Two type expressions are
name equivalent if and only if they are identical

Structural equivalence: two expressions are structurally
equivalent if and only if they have the same structure, that is,
if they are formed by applying the same constructor to
structurally equivalent type expressions



Example of Type Equivalence

In the Pascal fragment:

type nextptr = ^node;

prevptr = ^node;

var p : nextptr;

q : prevptr;

p is not name equivalent to q, but p and q are structurally
equivalent



Static Type Systems and their Expressiveness

A static type system enables a compiler to detect many
common programming errors

The cost is that some correct programs are disallowed

some argue for dynamic type checking instead
others argue for more expressive static type checking
but, a more expressive type system is also more complex



Compile-time Representation of Types

Need to represent type expressions in a way that is both easy
to construct and easy to check

Approach: Type Graphs

Basic types can have predefined “internal values”, for example,
small integer values
Named types can be represented using a pointer into a hash
table
Composite type expressions: the node for f (T1, . . . ,Tn)
contains a value representing the type constructor f , and
pointers to the nodes for the expressions T1, . . . ,Tn



Compile-time Representation of Types

Example:

var x, y : array [1..42] of integer;



Compile-time Representation of Types

Approach: Type Encodings

Basic types use a predefined encoding of the low-order bits

Basic Type Encoding
boolean 0000

char 0001

integer 0002

The encoding of a type expression op(T ) is obtained by
concatenating the bits encoding op to the left of the encoding
of T

Type Expression Encoding
char 00 00 00 0001

array(char) 00 00 01 0001

ptr(array(char)) 00 10 01 0001

ptr(ptr(array(char))) 10 10 01 0001



Compile-time Representation of Types

Type encodings are simple and efficient

On the other hand, named types and type constructors that
take more than one type expression are arguments are hard to
represent as encodings. Also, recursive types cannot be
represented directly.

Recursive types (for example, lists and trees) are not a
problem for type graphs; the graph simply contains a cycle



Types in an Example Programming Language

Let us assume that types are:

base types: integers and floats
arrays of a base type
booleans (used in conditional expressions)

The user declares types for all identifiers

The compiler infers a type for every expression



Type Checking and Type Inference

Type checking is the process of verifying fully typed programs

Type inference is the process of filling in missing type
information

The two are different, but are often used interchangeably



Rules of Inference

We have seen two examples of formal notation for specifying
parts of a compiler

Regular expressions (for the lexer)
Context-free grammars (for the parser)

The appropriate formalism for type checking is logical rules of
inference



Why Rules of Inference?

Inference rues have the form: If Hypothesis is true, then
Conclusion is true

Type checking computes via reasoning: If E1 and E2 have
certain types, then E3 has a certain type

Rules of inference are a compact notation for “If-Then”
statements



From English to an Inference Rule

The notation is easy to read (with practice)

Start with a simplified system and gradually add features

Building blocks:

Symbol ∧ is “and”
Symbol ⇒ is “if-then”
x : T is “x” has type “T ”

Example:

If e1 has type int and e2 has type int, then e1 + e2 has type int
(e1 has type int ∧ e2 has type int) ⇒ e1 + e2 has type int
(e1 : int ∧ e2 : int) ⇒ e1 + e2 : int

The statement (e1 : int ∧ e2 : int) ⇒ e1 + e2 : int is a special
case of H1 ∧ . . . ∧ Hn ⇒ C ; this is an inference rule



Notation for Inference Rules

By tradition, inference rules are written

` Hypothesis1 . . . ` Hypothesisn

` Conclusion

Type rules have hypotheses and conclusions of the form:

` e : T

` means “it is provable that . . . ”



Example Rules

Example

i is an integer
[Int]

` i : int

` e1 : int ` e2 : int
[Add]

` e1 + e2 : int

Thes rules give templates describing how to type integers and
+ expressions

By filling in the templates, we can produce complete typings
for expressions



Example: 1 + 2

1 is an integer
[Int]

` 1 : int

2 is an integer
[Int]

` 2 : int
[Add]

` 1 + 2 : int



Soundness

A type system is sound if, whenever ` e : T , then e evaluates
to a value of type T

We only want sound rules, but some sound rules are better
than others:

i is an integer

` i : number



Type Checking Proofs

Type checking proves facts e : T

Proof is on the structure of the AST
Proof has the shape of the AST
One type rule is used for each kind of AST node

In the type rule used for a node e

Hypotheses are the proofs of types of e’s subexpressions
Conclusion is the type of e

Types are computed in a bottom-up pass over the AST



Rules for Constants

i is an integer
[Int]

` i : number

[Bool]
` true : bool

[Bool]
` false : bool

f is a floating point number
[Float]

` false : bool



Some Other Rules

` e1 : int ` e2 : int
[Add]

` e1 + e2 : int

` e : bool
[Not]

` note : bool

` e1 : bool ` e2 : T
[While]

` while e1 do e2 : T



A Problem

What is the type of a variable reference?

x is an identifier
[Var]

` x :?

The local, structural rule does not carry enough information
to give x a type



A Solution

Put more information in the rules

A type environment give types for free variables

A type environment is a function from identifiers to types
A variable is free in an expression if it is not defined within the
expression



Type Environments

Let E be a function from identifiers to types

The sentence

E ` e : T

is read: under the assumption that variables have the types
given by E , it is provable that the expression e has type T



Type Environments and Rules

The type environment is added to the earlier rules, for example

i is an integer
[Int]

E ` i : int

E ` e1 : int E ` e2 : int
[Add]

E ` e1 + e2 : int

And we can now write a rule for variables:

E (x) = T
[Var]

E ` x : T



Type Checking Expressions

Production Semantic Rules

E → id {if (declared(id .name))
then E .type := lookup(id .name).type
else E .type := error()}

E → int {E .type := integer}

E → E1 + E2 {if (E1.type == integer ∧ E2.type == integer)
then E .type := integer
else E .type := error()



Type Checking Expressions

May have automatic type coercion

Example:

E1.type E2.type E.type

integer integer integer
integer float float
float integer float
float float float



Type Checking of Statements: Assignment

Semantic Rules:

S → Lval := Rval {check types(Lval .type,Rval .type)}

Note that in general Lval can be a variable or it may be a
more complicated expression, for example, a dereferenced
pointer, an array element, or a record field

Type checking involves ensuring that:

Lval is a type that can be assigned to, for example, it is not a
function or a procedure
The types of Lval and Rval are “compatible”, that is, the
language rules provide for coercion of the type of Rval to the
type of Lval



Type Checking of Statements: Assignment

Semantic Rules:

Loop → while E do S {check types(E .type, bool)}

Cond → if E then S1 elseS2 {check types(E .type, bool)}


