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Tutorial outline

Infroduction

. Scanning and tokenizing
. Grammars and ambiguity

Recursive descent parsing
Error repair

. Table-driven LL parsing

Bottom-up table-driven parsing

. Symbol tables

. Semantic analysis via attributes
. Abstract syntax trees

. Type checking

. Runtime storage management
. Code generation

. Optimization

. Conclusion

Copyright ©1994 Ron K. Cytron. All rights reserved -1-

SIGPLAN "94 COMPILER CONSTRUCTION TUTORIAL



What is a language translator?

You type: cc foo.c... What happens?

{ Source Program }

ANSI C Compiler

)

Binder / Loader

( iptt Computer —=(__ Answer )

Language: Vehicle (architecture) for fransmiftfing information between components
of a system. For our purposes, a language is a formal inferface. The goal of every

compiler is correct and efficient language franslation.
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The process of language translation

1. A person has an idea of how to compute something:

Fact(n) = ] if n <O
R P fact(n — 1) otherwise

2. An algorithm captures the essence of the computation:
fact(n) =ifn <0then 1 else n x fact(n — 1)

Typically, a pseudocode language is used, such as “pidgin ALGOL”.
3. The algorithm is expressed in some programming language:

int fact(int n) {
if (n <= 0) return(l);
el se return(n*fact(n-1));

}

We would be done if we had a computer that “understood” the language directly.
So why don’t we build more C machines?

a) How does the machine know it’s c) I¥’s hard to build such machines.
seen a C program and not a Shake- What happens when language ex-
speare sonnet? tensions are introduced (C++)?

b) How does the machine know what is d) RISC philosophy says simple ma-
“meant” by the C program? chines are better.
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Finally. ..

A compiler translates programs written in a source language into a fargef language.
For our purposes, the source language is typically a programming language—
convenient for humans to use and understand—while the target language is typically
the (relatively low-level) instruction set of a computer.

Source Program Target Program (Assembly)
mai n() { _mai n:
int a | #PROLOGUE# 0
’ set hi %i (LF12), %g1
add %1, % o( LF12), %91
a += 5.0; save %sp, Y91, ¥sp
} | #PROLOGUE# 1

set hi % i (L2000000) , %0

| dd [ %©0+% o(L2000000)], % O
ld [% p+-0x4], % 2

fitod %2, %4

faddd % 4,%0,% 6

f dt oi % 6, % 7

st % 7,[% pt+-0x4]

Running the Sun cc compiler on the above source program of 32 characters
produces the assembly program shown to the right. The bound binary executable
occupied in excess of 24 thousand bytes.

Copyright ©1994 Ron K. Cytron. All rights reserved -4- SIGPLAN 94 COMPILER CONSTRUCTION TUTORIAL



Structure of a compiler

Program Front End
| Scanner: decomposes the input stream
Scanner g\;c:: ;cr)'l:::s. So the string “a += 5.0;”
i [a][+ =]5.0][;]
ESEL Front Parser: analyzes the tokens for correct-
End ness and structure:

{Semantics} °
il 2D

Optimizer End ] ] ]
Semantic analysis: more analysis and
type checking:
Generation End
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Structure of a compiler

Middle End Code Generation

e The code generator can significantly af-
fect performance. There are many ways

° @ o compute “a+=5", some less efficient
than others:
e while (t # a + 5) do

t < rand()
The middle end might eliminate the con- od
version, substfituting the integer “5” for a1
the float “5.0”.

While optimization can occur throughout fthe franslation process, machine-
independent transformations are typically relegated to the middle-end, while instruc-
fion selection and other machine-specific activities are pushed info code generation.
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Bootstrapping a compiler

Often, a compiler is written in it “itself’. That is, a compiler for PASCAL may be written

in PASCAL. How does this work?
Initial Compiler for . on Machine M

1. The compiler can be written in a
small subset of [, even though
the compiler translates the full lan-
guage.

2. A throw-away version of the sub-
set language is implemented on M.
Call this compiler «.

3. The . compiler can be compiled us-
ing the subset compiler, to generate
a full compiler 5.

4. The L compiler can also compile
itself. The resulting object v can be
compared with ; for verification.

Copyright ©1994 Ron K. Cytron. All rights reserved

Porting the Compiler

1. On machine M, the code generator
for the full compiler is changed to
target machine N.

2. Any program in L can now be cross-
compiled from M to N.

3. The compiler can also be cross-
compiled to produce an instance of
~ that runs on machine N.

If the run-time library is mostly written in
L, or in an intermediate language of 3,
then these can also be translated for N
using the cross-compiler.
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What else does a compiler do?

Lt (p) for (I=1;, i<=n; ++i)
a=Db+ (c {

else {d =f; a[i] = Db[i] + c[i]

q =r; }

Error detection. stict language rules, consistently Program opiimizaiion. The target produced
enforced by a compiler, increase the likelihood that a by a compiler must be “observably equivalent” to the
compiler-approved source program is bug-free. source infterpretation. An optimizing compiler attempts

Error diagnosis. Compilers can often assist the to minimize the resource constraints (typically time and

space) required by the target program.

Program instrumentation. the target program

can be augmented with instructions and data to provide

program author in addressing errors.

Error repdair. some ambitious compilers go so far as to

insert or delete text to render the program executable.
information for run-time debugging and performance

analysis. Language features not checkable at compile-
fime are often checked at run-time by code inserted by

the compiler.

Sophisticated error repair may include symbol insertion, deletion, and use of inden-
fation structure.

Program opfimizafion can significantly decrease the time spent on array index
arithmetic. Since subscript ranges cannot in general be checked at compile-time,
run-time ftests may be inserted by the compiler.
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Compiler design points — aquatic analogies

Powerboat tumbo-. These compilers are fast, load-
and-go. They perform little optimization, but typically
offer good diagnostics and a good programming envi-
ronment (sporting a good debugger). These compilers
are well-suited for small development tasks, including

small student projects.

Sailboat scrL, Postscript. These compilers can do neat
fricks but they require skill in their use. The compilers
themselves are often small and simple, and therefore
easily ported. They can assist in bootstrapping larger

systems.

Tugboclt C++ preprocessor, RATFOR. These compilers
are actually front-ends for other (typically larger) back-
ends. The early implementations of C++ were via a

preprocessor.

quge Industrial-strength. These compilers are developed
and maintained with a company’s reputation on the
line. Commercial systems use these compilers because
of their integrity and the commitment of their sponsoring
companies to address problems. Increasingly these
kinds of compilers are built by specialty houses such as

Rational, KA, efc.

Ferry cnu compilers. These compilers are available via
a General Public License from the Free Software Foun-
dation. They are high-quality systems and can be built

upon without restriction.

Another important design issue is the extent to which a compiler can respond

incrementally to changes.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Compilers are taking over the world!

While compilers most prevalently participate in the translation of pro-

gramming languages, some form of compiler technology appears in
mMany systems:

Text processing Consider the “x-roff” text processing pipe:

Pic — TBL — EQN — TROFF
or the KIeX pipe:
BTEX — TEX

each of which may produce

DVI — POSTSCRIPT

Silicon compilers Such systems accept circuit specifications and com-
pile these into VLI layouts. The compilers can enforce the appro-

priate “rules” for valid circuit design, and circuit libraries can be
referenced like modules in soffware library.
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Compiler design vs. programming language design

Programming languages

So compilers

have offer
Non-locals Displays, static links
Recursion Dynamic links

Dynamic Storage
Call-by-name
Modular sfructure
Dynamic typing

Garbage collection
Thunks

Interprocedural analysis

Stafic type analysis

It’s expensive for
a compiler to offer

SO some languages
avoid that feature

Non-locals
Call-by-name
Recursion
Garbage collection

C
C, PASCAL

FORTRAN 66
C

In general, simple languages such as C, PASCAL, and SCHEME have been more
successful than complicated languages like PL/1 and ADA.
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Language design for humans

Procedure foo(z, y)

declare

z,y integer

a,b integer

*p integer
p < rand() ? &a : &b
*p — x4y

end

Syniaciic simplicity.  syntactic signposts are
kept to a minimum, except where aesthetics dictate

otherwise: parenthesesin C, semicolons in PASCAL.

Resemblance to mathematics. infix noto-

fion, function names.

Flexible internal structures. Nobody would use
a language in which one had to predeclare how many

variables their program needed.

Freedom from specifying side-effects.

What happens when p is dereferenced?

Programming language design is offen a compromise between ease of use for
humans, efficiency of translation, and efficiency of target code execution.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Language design for machines

( Synbol Tabl e ( NodeSenanti cs
( Nunbynbol s 5) ( Nodel D 2)
( Synbol ( Def
( Synbol Name x) (DefI D 2)
(Synmbol ID 1) (Synbl D ?)
) (AliasWth 1)
( Synbol ( Def Val ue
( Synbol Nanme vy) (+
(Synbol ID  2) (Use
) (Usel D 1)
. (Synbl D x)
) )
(Ali asRel ati ons (Use
(NumAl i asRel ations 1) (Usel D 2)
(Ali asRel ati on (Synbl D vy)
(AliaslD 1) )
(MayAl i ases 2 a b) )
) )
) )
)

We can require much more of our infermediate languages, in ferms of details and
syntactic form.
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Compilers and target instruction sets

How should we translate X =Y + 7

In the course of its code generation, a
simple compiler may use only 20% of
a machine’s potential instructions, be-
cause anomalies in an instruction set
are difficult to “fit” info a code gener-
ator.

Consider two instructions

ADDREG Ry R» Ry + R+ Ry
ADDMEM Ry Loc Ry < Ry + xLoc

Each instruction is desfructive in its first
argument, so Y and 7 would have to be
refetched if needed.

LOAD 1Y
ADDMEM 1 Z
STORE 1 X

A simpler model would be to do all arith-
metic in registers, assuming a nonde-
sfructive instruction set, with a reserved
register for results (say, Ro):

LOAD 1Y

LOAD 2 Z
LOADREG 0 1
ADDREG 0 2

STORE 0 X

This code preserves the value of Y and
Z in their respective registers.

A popular approach is 1o generate code assuming the nondestructive paradigm,
and then use an instruction selector to optimize the code, perhaps using destructive

operations.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Current wisdom on compilers and architecture

Architects should design “orthogonal” RISC instruction sets, and let the optimizer
make the best possible use of these instructions. Consider the program

fori < 1to 10do X «+ A[i]

where A is declared as a 10-element array (1... 10).

The VAX has an instruction essentially of
the form

Index(A,1,low, high)

with semantics

if (low <1 < high) then
return (A + 4 x 1)
else

return (error)
fi

Internally, this instruction requires two
tests, one multiplication, and one addi-
tion.

Copyright ©1994 Ron K. Cytron. All rights reserved

However, notice that the loop does not
violate the array bounds of A. Moreover,
in moving from A[:] fo A[i + 1], the new
address can be calculated by adding 4
to the old address.

While the use of an I ndex instruction may
seem atiractive, better performance
can be obtained by providing smaller,
faster instructions to a compiler capable
of optimizing their use.
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A small example of language translation

L(Add) =
sums of two digits, expressed

expressed in the usual (infix)
notation

That’s not very formal.
mean by this?

{(0+4,347,...}

What do we

| nput (S)
case (s)
of ("0+0") return(OK

of ("9+9") return(OK
def aul t r et ur n( BAD)
endcase

The program shown on the left recog-
nizes the Add language. Suppose we
want to fransiafe strings in Add into their

sum, expressed base-4.
| nput (S)
case (s)
of ("0+0") return("0")

of ("5+7") return("30")
of ("9+9") return("102")

def aul t oops( BAD)
endcase

A language is a sef of strings. With 100 possibilities, we could easily list all strings in this
(small) language. This approach seems like lots of work, especially for languages with
infinitfe numibers of strings, like C. We need a finite specification for such languages.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Grammars

The grammar below generafes the Add
language:

S — +D
D —
|
|

N —-00O

|9
A grammar is formally
G=(V,5,PS)
where

V is the set of nonterminals. These ap-
pear on the left side of rules.

Y is an alphabet of terminal symbols,
that cannot be rewritten.

P is a set of rewrite rules.
S is the sfarf or goal symbol.

The process by which a terminal string is
created is called a derivation.

S = D+D
= 8+D
= 8+4

This is a leffmost derivation, since a string
of nonterminails is rewritten from the left.
A tree illustrates how the grammar and
the derivation sfructure the string:

S
D + D
| |
8 4

The above could be called a derivation
free, a (concrete) syntax tree, or a parse
free.

Strings in L(G) are constructed by rewriting the symbol S according fo the rules of P

unfil a ferminal string is derived.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Sums of two numbers

Consider the set of strings that represent the sum of two numbers, such as 405 + 26.
We could rewrite the grammar, as shown below:

S -~ D+D S

D - Dd N
| d .
d - 0 /\ /X

o

|9

N—o0o —O
o —o

Another solution would be o have a separate fokenizing process feed "D”s to the
grammair, so that the grammar remains unchanged.

o | I+l b | Pasx
T SN 7 T~ Scanner
4 0 5 + 2 6

P N N N NI N e N N 11 s 11
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Scanners

Scanners are often the ugliest part of a compiler, but when cleverly designed, they
can greatly simplify the design and implementation of a parser.

Typical tasks for a scanner: Unusual tasks for a scanner:
¢ Recognize reserved keywords. ¢ In (older) FORTRAN, blanks are op-
e Find integer and floating-point con- tional. Thus, the phrases
stants. DOL0I =1, 5 and DO10I =1. 5
e Ignore comments. are distinguished only by the
¢ Treat blank space appropriately. comma vs. the decimal. The first
e Find string and character constants. statement is the start of a DO loop,
o Find identifiers (variables). while the second statement assigns
the variable DO10I .
The C statement e In C, variables can be declared
i f (++x==5) foo(3): by bu.llt-ln or by user-defined types.
Thus, in
might be tokenized as f00 X,Y:
if| | (|[++][ID/==|5]))|[ID]|(||int]]) | the C grammar needs to know that
f oo is a type name, and not a vari-
able name.

The balance of work between scanner and parser is typically dictated by restrictions
of the parsing method and by a desire to make the grammar as simple as possible.
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Scanners and Regular Languages

Most scanners are based on a simple
computational model called the finite-
stafe aufomarton.

blanks

These machines recognize regular lan-
guages.

To implement a finite-state transducer
one begins with a GoT1O table that de-
fines transitions between states:

GOoT0 table

State | ch dig blank
1 3 2 1
2 5 2 4
3 3 3 6
4 |3 2 4
5 5 5 5
6 |3 2 6

which is processed by the driver

state < 1
while (true) do

c < NextSym()
/* Do action ACTION[state][c] x/
state < GOTO[state|[c]

od

Noftice the similarity between states 1, 4, and 6.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Transduction

While the finite-state mechanism recognizes appropriate strings, action must now be

taken to construct and supply tokens to the parser. Between states, actions are
performed as prescribed by the ACTION table shown below.
ACTION table Actions
State | ch dig blank 1. ID = ch
; ‘]1 : 2 2. Num = dig
3 2 7 8 3. Do nothing
4 1 2 3 4. Error
5 4 4 4 5. Num = 10 x Num + dig
6 1 2 3 6. return NUM
7. ID = ID||ch
8. return ID

Technically, the ability fo perform arbitrary actions makes our fokenizer more pow-
erful than a finite-state automaton. Nonetheless, the underlying mechanism is quite
simple, and can in fact be automatically generated. . ..
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Regular grammars

I

Ll——1——1——

blank [1]
ch
dig 2|
dig 2]
ch|5
blank 4]
ch

dig
blank 6]

In a regular grammar, each rule is of the form

A — aA
A — a
where AecVandaec (SU{A}).
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| EX as a scanner

First, define character classes:

ucase [ A- Z]
| case [ a- z]

letter ({ucase}| {l case})

Zero 0

nonzero [1-9]

sign [+-]
di git ({zero}| {nonzero})
bl anks [ \t\f]

new i ne \n

Next, specify patterns and actions:

{LH({L3 {Dp)~

{ String(yytext);

}

return(1D);

“++ll

{
}

return(lncOP);

In selecting which pattern to apply, LEX
uses the following rules:

1. LEx always ftries for the longest

match. If any pattern can “keep
going” then Lex will keep consum-
ing input until that pattern finishes or
“gives up”. This property frequently
results in buffer overflow for improp-
erly specified patterns.

. LEX will choose the pattern and ac-

tion that succeeds by consuming the
most input.

. If there are ties, then the pattern

specified earliest to LEX wins.

The notation used above is regular expression notation, which allows for choice,

catenation, and repeats.

One can show by construction that any language

accepted by a finite-state automaton has an equivalent regular expression.

Copyright ©1994 Ron K. Cytron. All rights reserved
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A comment

An interesting example is the C-like
comment specification, which might be
tempting to specify as:

ek

But in a longest match, this pattern will
match the beginning of the first com-
ment to the end of the last comment,
and everything in between. If LEX’s
buffers don’t overflow, most of the input
program will be ignored by this faulty
specification.

A better specification can be deter-
mined as follows:

1. Start with the wrong specification.

2. Construct the associated determin-
istic FSA.

3. Edit the FSA to cause acceptance at
the end of the first comment (shown
below).

4. Construct the regular expression as-
sociated with the resulting FSA.

SZoNe==0se

with the corresponding regular expression

[-1 (le)y* -(-)* c]* (/leyr -(-)* /

Copyright ©1994 Ron K. Cytron. All rights reserved
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W & N O

10.

11.

Teaching regular languages and scanners

Classroom

. Motivate the study with examples

fromm programming languages and
puzzles (THINK-A-DOT, etc.).

. Present deterministic FSA (DFA).
. Present nondeterministic FSA (NFA).
. Show how to consiruct NFAs from

regular expressions.

. Show good use of the empty string

() or e).

Eliminate the empty string.
Eliminate nondeterminism.
Minimize any DFA.

Construction of regular expressions
from DFA.

Show the correspondence between
regular grammars and FSAs.

The pumping lemma and nonregular
languages.

Projects and Homework

. Implement THINK-A-DOT.
. Check if a YACC grammair is regular.

If so, then emit the GOT0O table for a
finite-state driver.

. Augment the above with ACTION

clauses.

. Process a YACC file for reserved key-

word specifications:
% oken <rk> then

and generate the appropriate pat-
tern and action for recognizing
these:

"then" { return(THEN); }

. Show that regular expression nota-

tion is itself not regular.

Some useful resources: (24, 28, 16, 2, 26).
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Nonregular languages

To grow beyond regular languages, we now allow a rule’s right-hand side to contain
any string of terminals or nonterminais.

A — (A) Suppose that some finite-state machine
| X M of k states can recognize { ("z)" }.

describes the language ("z)". ((-09--))

A b/, f A O@kstates )
N QOQQOQ
A O O

Consider the input string = = (*z)". After
A processing the k" ‘C, some state must
have been visited twice. By repeating
the portion of > causing this loop, we
A obtain a string

*(z)*,k>0,7>0

which is not in the language, but is ac-
cepted by M.

Since the proof did not depend on any particular k£, we have shown that no finite-
stfate machine can accept exactly this language.
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Some more sums

Grammar

E - E+E

| a E
Lefimost derivation

E = [EME
= |E+E+E
= a+E+E [
= a+a+E
= qa+a+a
Another leffmost derivation

E = [EME
= |[a}tE
= a+E+E
= a+a+E
= a+a+a

If the same sfring has two parse trees by a grammar G, then G is ambiguous.
Equivalently, there are two distinct leftimost derivations of some string. Notfe that
the language above is regular.
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Ambiguity

The parse free below structures the input The parse free below structures the input
string as string as
(a+(a+a))

E
E
E/FE E
| | | |
a + a + a
{ ‘ )

| a

o With addition, the two expressions may be semantically the same. What if the a’s
were the operands of subtraction?

e How could a compiler choose between multiple parse frees for a given string?

e Unfortunately, there is (provably) no mechanical procedure for determining if a
grammar is ambiguous; this is a job for human intelligence. However, compiler
construction tfools such as YACC can greatly facilitate the location and resolution
of grammar ambiguifies.

e It's important to emphasize the difference between a grammar being ambigu-
ous, and a language being (inherently) ambiguous. In the former case, a
different grammar may resolve the ambiguity; in the lafter case, there exists
NO unambiguous grammar for the language.
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Syntactic ambiguity

A great source of humor in the English
language arises from our ability to con-
struct interesting syntactically ambigu-
ous phrases:

1. | fed the elephant in my tennis shoes.
What does “in my tennis shoes” modify?

(a) Was | wearing my fennis shoes while feeding the
elephant?

(b) Was the elephant wearing or inside my tennis
shoes?

2. The purple people eater. wnatis purple?

(a) Is the eater purple?
(b) Are the people purple?

Suppose we modified the grammar for
C, so that any {...} block could be
freated as a primary value.

{int i; i=3*5; } + 27;
would seem to have the value 42. But
if we just rearrange the white space, we
can get

{int i;
+27:

| =3*5; }

which represents two statements, the
second of which begins with a unary
plus.

A good assignment along these lines is fo modify the C grammar to allow this simple
language extension, and ask the students to defermine what went wrong. The
sfudents should be fairly comfortable using YACC before frying this experiment.

Copyright ©1994 Ron K. Cytron. All rights reserved
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Semantic ambiguity

In English, we can construct sentences
that have only one parse, but still have
two different meanings:

1. Milk drinkers turn to powder. Are more
milk drinkers using powdered milk, or are milk drinkers
rapidly dehydrating”?

2. | cannot recommend this student too
highly.

unable to offer my support.

Do words of praise escape me, or am |

Copyright ©1994 Ron K. Cytron. All rights reserved

In programming languages, the lan-
guage standard must make the mean-
ing of such phrases clear, often by ap-
plying elements of context.

For example, the expression
a—+b

could connote an integer or floating-
point sum, depending on the types of
a and b.
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A nonambiguous grammar

E — (PlustEE)
| (Minus EE)
| a

It's interesting to note that the above grammar, infended to generate Lisp-like
expressions, is not ambiguous.

Plus ( Plus a Plus a ( Plus a
is the prefix equivalent of is the prefix equivalent of
((a+a)+a) (a+(a+a))

These are two different strings from this language, each associated explicitly with a
parficular grouping of the terms. Essentially, the parentheses are syntactic sentinels
that simplify construction of an unambiguous grammar for this language.
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Addressing ambiguity

E - E+E
| a

we’'ll try to rewrite the above grammair, so that in a (leffmost) derivation, there’s only
one rule choice that derives longer strings.

E - E+a E - a+E
| E-a | a-E
| a | a

These rules are leff recursive, and the The grammar is still unambiguous, but
resulting derivations tend to associate strings are now associated from the

operations from the left: right:
E
E E
E
E&
[ a + a + a } [ a + a + a
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Addressing ambiguity (cont’'d)

Our first try to expand our grammar
might be:

E - E+a
| Exa
| a
a + a * a

The above parse tree does not reflect
the usual precedence of « over +.

Copyright ©1994 Ron K. Cytron. All rights reserved

To obtain sums of products, we revise our
grammar:

E - E+T
| T
This generates strings of the form
I'+T+...+7T

We now dllow each T'to generate strings
oftheformaxax...xa

E - E+T
| T

T — Txa
| a

—-33-
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Translating two-level expressions

Since our language is still regular, a finite-state machine could do the job. While the

, $ .
machine @ @ could do the job, there’s not enough “structure”

to this machine to accomplish the prioritization of « over +. However, the machine
below can do the job.

+/2

Sum =0 Prod = Prod x Acc

0

1 Acc=a Sum = Sum + (Prod x Acc); Prod =1
2 Sum = Sum + Acc Acc=a

3 Prod = Prod x Acc Sum = Sum + Acc

4 Acc=a Sum = Sum + (Prod x Acc); Prod =1
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Let’s add parentheses

While our grammar currently structures inputs appropriately for operator priorities,
parentheses are typically introduced to override default precedence. Since we
want a parenthesized expression to be treated “atomically”, we now generate sums
of products of parenthesized expressions.

E — E+T

T x F

F E)

QO ~m — —

%
|
%
|

This grammar generates a nonregular

language. Therefore, we need a more If

sophisticated “machine” to parse and = F

translate its generated strings. T
]
a

The grammar we have developed thus far is the textbook “expression grammar”. Of
course, we should make a into a nonterminal that can generate identifiers, constants,
procedure calls, efc.
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Beyond finite-state machines

For a rule of the form
A —- bC

we developed a finite-state mechanism
of the form

b
A C

After arrival at C, there is no need to
remember how we got there.

Now, with a rule such as
F — (E)

we cannot just arrive at an £ and for-
get that we need exactly one closing
parenthesis for each opening one that
got us there.

Instead of “going to” a state £ based
on consuming an opening parenthe-
sis, suppose we called a procedure £
to consume all input ultimately derived
from the nonterminail:

Procedure F()

call Ezpect(OpenParen)
call £()
call Ezpect(CloseParen)

end

This style of parser construction is called
recursive descent. The procedure as-
sociated with each nonterminal is re-
sponsible for directing the parse through
the right-hand side of the appropriate
production.

1. What about rules that are left-recursive?

2. What happens if there is more than one rule associated with a nonterminal?

Copyright ©1994 Ron K. Cytron. All rights reserved
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Eliminating left recursion — grammar transformation

Original Transformed
A - Aa A - pA
I A — aA I A
A A
N\ /N
A« B A
N N
A« a A
N /N
A a A’
AN ’ N
o}
S A
A 7N\
SN « -
A Y
B N

The two grammmars generatfe the same language, but the one on the right generates

the g first, and then a string of as, using a rule that is right recursive instead of left
recursive.
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The transformed expression grammar

E - TF
E' — +TFE
E - -TF
A
T — FT
T — «FT'
7 — [JFT
A
F — (E)
| a
Which rule to choose? And what about \?
F
T FE F T’\ N
PN
[ a*a+a*a} + A~ (( a | )
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First sets

{a} ifo e X
First(a) = { Uaswep First(w;) ifa eV
{2} if o = A
First(ay...ap) = U First(a;)
j | ViZ (eFirsi(ay))
A — BC w First(w)
| EFGH H [{h,\}
| H G |{g}
B —- b C [{e A}
C —- A B [{b}
| c E [{e N}
E — A F [ {ce N}
| e A |{becg h )}
F — CE BC |{b}
G > g EFGH | {e,c, g}
H — )
| h
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Follow sets

1. Initially set Follow(N) =0,V N € V.
2. Given production A — aBg3, set

Follow(B) = Follow(B) U (First(8) —{ A })
3. Given production A — aBj3, where \ € First(3), set

Follow(B) = Follow(B) U Follow(A)

A — BC N Follow (V)
| EFGH A {}
| H B | First(C)U Follow(A) = {c}
B - b F | First(G) = {g}
C —- A C | Follow(A) U Fuirst(FE)
| c U Follow(F) = {e,g}
E — A E | First(F)U First(G) = {c,eg}
| e G | First(H)U Follow(A) = {h}
F — CE H | Follow(A) = {}
G —- g
H — A
| h
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Recursive descent parser generation

Procedure NonTermN
if (LookAhead() € First(w), where (N — wy) € P) then
/* Use wy fo generate calls to Expect() and other nonterminails */

else
if (LookAhead() € Follow(N)and (N — A) € P) then
return ()
else
/* error*/
fi
fi
end
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Recursive descent — Example

ACS
C

A
aBCd
BQ

A

bB

d

q

O »

>
L= —1—=11
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_AD—

Follow
S|{a,b,dcS} {}
Al {a,b,d, N}  {cS}
B {b,d} {c,d,q}
C {e, A} {d,$}
Q {c, 5}
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The generated procedures

S - ACS
C —- ¢
A
A —- aBCd
| BQ
A
B — bB
| d
Q — g
First Follow
S|{a,b,dcS} {}
Al {a,b,d, N}  {cS}
B {b,d} {c,d,q}
C {e, A} {d,$}
Q {Q} {C,S}
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Procedure S()
if (LookAhead() € {a,b,d,c,S}) then
call A()
call C()
call Ezpect(S)
else

/* error*/
fi
end

Procedure C/()
if (LookAhead() € {c}) then

call Ezpect(c)
else
if (Lookahead() ¢ {d,S}) then
[* error*/
fi
fi

end
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The generated procedures (cont’'d)

S - ACS
C —- ¢
A
A —- aBCd
| BQ
A
B — bB
| d
Q — g
First Follow
S|{a,b,dcS} {}
Al {a,b,d, N}  {cS}
Bl {bd} {cdq}
C {e, N} {d,S}
Q {Q} {C,S}
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Procedure A()

if (LookAhead() € {a})then
call Ezpect(a)
call B()
call C()
call Ezpect(d)

else
if (LookAhead() € {b,d}) then

call B()

call Q()

else
if (LookAhead() € {¢,$}) then

return ()
else
/¥ error*/
fi
fi
fi

end
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The generated procedures (cont’'d)

S - ACS
C —- ¢
A
A —- aBCd
| BQ
A
B — bB
| d
Q — q
First Follow
S|{a,b,dcS} {}
Al {a,b,d, N}  {cS}
Bl {bd} {cdq}
C {e, N} {d,S}
Q {Q} {C,S}
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Procedure B()
if (LookAhead() € {b}) then

call Ezpect(b)
call B()
else

if (LookAhead() € {d}) then

call Ezpect(d)
else

/* error*/
fi
fi
end

Procedure Q()
if (LookAhead() € {q}) then

call Ezpect(q)
else

/¥ error*/
fi

end
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Recursive descent — expression grammar

E - TF Procedure F’
£ — +TFE if (LookAhead(+)) then
B — -TE call Ezpect(+)
T | I)=\T’ call T
T : «F T call &
T — [/FT else
A if (LookAhead(—)) then
F — (E) call Expect(—)
| a call T
First Follow call £
E[{Ga}  {)5) slse
ol {),$} if (LookAhead($,’)’)) then
T {(7a} {+7_7)7S} return 0
T {*7/} {+7_7)7S} else
Fl{Ga}r {x/ih—=)5) call Error()
fi
fi
fi
end
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Maintaining lookahead

Procedure main()

L Atok < GetNextToken()
call 5()

end

Function Look Ahead() : token
return (L Atok)

end

Procedure Ezpect(tok)
if (LAtok = tok) then

L Atok < GetNextToken()
else

/* error*/
fi

end
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A lookahead of k. tokens is maintained
by appropriately buffering the input.

Technicadlly, & lookahead is equivalent
in power to a single token of looka-
head. The proof is constructive: each
permutation of £ symbols is encoded as
a single token.

The FEzpect(tok) procedure first com-
pares the incoming token against tok,
and then advances input into the looka-
head buffer.
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Recursive descent — correctness and properties

When is our recursive descent parser
construction successful? If the gram-
mar involves any left-recursion, then our
construction method will create a parser
containing an infinite loop. So, we re-
quire that the grammar be free of left-
recursion.

The grammar fransformation technique
covered earlier can help eliminate left-
recursion.

Also, we require that the parser operate
deterministically: actions taken at each
step make progress toward completion,
so that backtracking is not necessary.

Thus, given a set of rules for nonterminal N
N —

we require
1.

Wi

OFirst(wi) ={}

2. fA=w;, 1 <5 <n,then we also require

U(Follow(N) N First(w;)) =1 }

4
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Recursive descent and leftmost derivations

Let’s examine how our recursive descent parser recognizes the string “abbddc$”

/?\ 1]s — ACS$
2|C = ¢
A C\ $ 3 | A
e 4/A — aBCd
a d C 5 | BQ
A g 1
b C\ 7/B — bB
AL 5 |
b 21Q = q
I? S = ACS
d = l[aBCd|C$
The procedure activations trace a left- — abBCdCy
most derivation of the string. We call this = abbBCdC$
style of parsing LL, because it uses a Left- = abbld/CdC$
most scan of the input and produces a = abbd_ dC$
Left-most derivation. = abbdd[c]$

In fact, the record of the parse is simply the order in which the grammar rules are

applied: [1]|4]|71(7](8][3][2]
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Error repair

4 N\

O
O O
0° ° o ©
o O ©
O O
Good programming languages are de-
signed with a relatively large “dis-
tance” between syntactically correct
programs, to increase the likelihood that

conceptual mistakes are caught as syn-
tactic errors.

O 0

J/

Error repair usually occurs at two levels:

Local: repairs mistakes with little global
import, such as missing semicolons
and undeclared variables.

Scope: repairs the program text so that
scopes are correct. Errors of this
kind include unbalanced parenthe-
ses and begin/end blocks.
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Repair actions can be divided into in-
sertions and delefions. Typically the
compiler will use some lookahead and
backtracking in attempting to make
progress in the parse. There is great vari-
ation among compilers, though some
languages (PL/C) carry a tradition of
good error repair. Goals of error repair
include:

1. No input should cause the compiler
fo collapse.

2. lllegal constructs are flagged.

3. Frequently occurring errors are re-
paired gracefully.

4. Minimal stuttering or cascading of
errors.

LL-style parsing lends itself well to er-
ror repair, since the compiler uses the
grammar’s rules to predict what should
occur next in the input.
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Augmenting recursive descent parsers for error recovery

Recursive and LL parsers are often called predicfive, because they operate by
predicting the next step in a derivation.

Suppose the parser is operating in procedure A for some nonterminal A. If an error
occurs, it seems reasonable to recover by skipping to a symbol that could follow A,
and then return.

E — TF Procedure F’'(StopSet)
E — +TE if (Look Ahead(+)) then
E' — -TE call Ezpect(+)
. L I):\T’ call T'({ +, — } U StopSet)
T s v ET call E'(StopSet)
T — [FT else
P if (LookAhead($,’)’)) then
F — (E) return
| a else
First Follow | call Error Recover(StopSet)
El{Ga} ()8 A
E'{+ -} {)5} fi

T {(7a} {+7_7)$
T {*7/} {+7_7)7$
F {(7a} {*7/7+7_7)7 }
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Table-driven LL(k) parsing

Our recursive descent parser contained a procedure for each nonterminal. The
generation of these procedures could be automated—through the construction and
testing of First and Follow sets—for any grammar free of left recursion.

Another equally automatable approach is to use a simple parsing engine that is
driven by tables constructed by similar analysis of the grammarr.

Grammar | Grammar
Analyzer LL(k) A VAN
Parsing Engine
| nput
Table l

The parsing engine begins by pushing the start symbol S onfo the stack. Each
subsequent action is one of the following:

Match: pairs an input symbol a an a on tfop-of-stack.
Apply: replaces the nonterminal N with w, where (N — w) € P.
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Match

If the top-of-stack contains the terminal symbol “a”, then the parsing engine must
find an “a” as the next input symbol; the stack is popped, and the input is advanced.

Before After

a 3 /NN VA

¢ If a match simultaneously empties the stack and exhausts the input stream, then
the string is accepfed by the parser.

¢ If a maftch is aftempted, but the symbols disagree, then an error is declared.
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Apply

If the top-of-stack contains a nonterminal N, then the parsing engine must choose
the appropriate rule for N, say N — af~. The stack is popped of symbol N, and the
symboils «, 5, and v are pushed onto the stack, such that « is the new top-of-stack.

Before After

VAU 8] e
Y
D

Since a match is always required when a terminal is exposed on top-of-stack, the
only information that must be coded in our table is the rule that should be applied
when a nonterminal appears on top-of-stack. As with our recursive descent parser,
this decision can be based on k£ symbols of lookahead into the input stream.
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Constructing the table

18 — ACS$ First Follow
2|C - ¢ S1{ab,dc,S} {}
3] D) Al {a,b,d, A} {¢$})
4A — aBCd B {b,d} {e,d, g}
5 | B@ Cl {eA} {d,S}
E | A Q {Q} {C,S}
7/]B — bB
8 | d
9 — q
Lookahead
NonTerm|a b ¢ d g S
S 1T 1 11 1
C 23 3
A 45 65 6
B 7 8
Q 9

The nonblank entries in the above table indicafte the numiber of the rule that should
e applied, given a nonterminal on top-of-stack and an input symbol as lookahead.
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Using the table

ACS Lookahead

c NonTerm|a b ¢ d q $

A S 1 1

aBCd C

BQ A 4 5
B /
Q

w

>
L= —171—=11

bB

[of[o|[N[or]|on] ][] [—|

Below is shown the stack activity in parsing the input string “ablbddc$”.

a o o
B B B d
C C C C Input string
A d d d d d
C C C C C C C
S s | s | s | s | s | s |s abbddcs
4]
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Bottom-up parsing

a /K \d C
° /B\
N

" f

d
A bottom-up parse is essentially a right-
most derivation, run in reverse. Instead
of replacing a nonterminal by a string,

we recognize the string as reducing to
the nonterminal.

O »

>
——4 =11

(o]

[of[o|[N[or]|on][ ][] [—|

I 2 R R

ACS$

aBCd

o> w
@ O

>fD
o 4+
v o

Alcl$
aBCd|c$
aB_dc$

abl/bB/dc$
abbld|/dc$

The parsing engine issues the following insfructions:

shift: a symbol is moved from input to top-of-stack.

reduce r: the stack is modified by applying rule r.
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Shift

Before After

3/ NN

:

e Like The top-down parser, the bottom-up parser checks for errors on a shift. The
parse table we shall construct indicates when a shift is error-free.

e Actually, instfead of pushing a symbol onto the stack, we push a sfafe, which
indexes the parse table and represents the current possibilities of the parse.
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Reduce

Before After

3/ NN

:

e If the rule appliedis N — w, where w has m symbols, then m symbols are popped
off the stack, and a symbol representing N is pushed.

e It's important o remember that a canonical parse can perform reductions only
at the top-of-stack.
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Rightmost derivation in reverse — slow motion

Stack Input Activity
abbddc$ Shift

a bbddc$ Shift
ab bddc$ Shift
abb ddc$ Shift
abbd dc$| Reduce B — d
abbB dc$| Reduce B — bB
abB dc$| Reduce B — bB
aB dc$| ReduceC — )\
aBC dc$ Shift
aBCd c $ | Reduce A — aBCd
A c$ Shift
Ac $ Reduce(C — ¢
AC $ Shift
ACS Reduce S — ACS
S Accept

This is L R-style parsing: a scan from the left that produces a rightmost derivation.

We could have tried to apply C' — X\ at any point during the parse, but most would
not have made progress toward an accept. Where parse table construction is
successful, the table directs the parse towards an accept if one is possible.
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LR table construction

Each state of the parser represents pars- We then label each component of the
ing possibilities after processing a given state with an action, indicating transfer
prefix of the input string. to some other state, reduction by a rule,
To construct the canonical LR(0O) set of or accept:
states: Q) X — Y o Z see 17
W — Xzy o A Sote O
1. Each state begins with a kernel that F - aBCy e
represents progress through certain A — e bcd =2
rules of the grammair: A — « zA 17
QS X — Yy ¢ z _
W — Xzy o A which may create a new state:
F — aBCy e (17) X — yz e w110
The dot (e¢) shows the progress A —- 2z ¢ A soe 1
through the rule achieved by mov- A — e bcd 2
ing into this state. A — o ZA soe 18

2. When ¢ is next to a nonterminal, we
must add into this state the closure
by expanding all rules of the nonter-
minal:

Q) A - ebcd
A — e ZA
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Table construction

4D ACS & 6) B — d e |8
aBCd &=
BQ o 7Y S - AC o $§ 313

w
c 3®

Q o Q O [
TS5 T35 09

g3

B8 C — c o T[2

O
o)
2Q S 9

om@hwm

Q
o)

9 A — aB ¢ Cd 214
C — e C soe 8

| . Resueo
(10) A > BQ o |5

>
®

@)
<>

O
B
°
0
g812¢

oo

= a
gg Q O Q O
[0 ® O ® O
-

(I Q - q e =9

w
_ 4
®
(o
w
g¢ 99199
o OO

(120 B — bB e |7

= 10 (13) § - AC$ o T
1

(14) A — aBC e d 215

o B o
e bB o5 (15 A - aBCd ¢ |4
o d 2 6
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Conflict resolution

11 — ACS Within a state, how do we resolve

2lc o ¢ whether to shift or reduce when either

3] D action seems appropriate?

4A — aBCd (M S — e ACS 2

S | B® A -~ o aBCd =3

6 [ A | e BQ e 4

//B — bB | e e |6

8 | d B -~ e bB < 5

921Q@ — g | e d 2 6

First Follow Examining the Follow information shows

S| {a,b,dcS} {1 that only those input symbols in {¢,S}
Al {a,b,d X} {8} canfollow an A. In state (1) we therefore
B {b,d} {c,d g} == 6| only when “c” or “$” appears
C {e, N} {d,$} next in the input. Since these symbols
Q {q} {c,$) are disjoint from the input symbols that

cause shifts into other states ({ a,5,d }),
we can resolve the apparent conflict.

In general, a state might have an apparent shiff/reduce or reduce/reduce conflict.
The more expensive table consfruction methods generally provide better conflict
resolution.
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Table for our example

State

a

d

q

A

C

Goto
State

Reduce 4
by rule

'I Goto 3 Goto Reduce 6 Goto 6 Reduce 6 Goto 2 Goto 4
State State by rule State by rule State State
2 Goto 8 Reduce 3 Reduce 3 Goto 7
State by rule by rule State
3 Goto Goto 6 Goto 9
State State State
4 Goto 'I 'I Goto 'IO
State State
5 Goto Goto 6 Goto 'I 2
State State State
6 Reduce 8 Reduce 8
by rule . . . . . . . . . . . . . . . . . . . by rule
7 Goto 'I 3
State
8 Reduce 2 Reduce 2
by rule . . . . . . . . . . . . . . . . . . . by rule
9 Goto 8 Reduce 3 Reduce 3 Goto 'I 4
State by rule by rule State
'IO Reduce 5 Reduce 5
by rule . . . . . . . . . . . . . . . . . . . by rule
'I 'I Reduce Q Reduce Q
by rule . . . . . . . . . . . . . . . . . . . by rule
'|2 Reduce 7 Reduce 7
by rule . . . . . . . . . . . . . . . . . . . by rule
] 3 ~— . . . . . . . . . . . . . . . . . . . —

Reduce 4
by rule
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Using the table

Copyright ©1994 Ron K. Cytron. All rights reserved

State|alb/c|[d|qS$S[[A][B|[C]Q
1 [ 3]5][6]] 6 6/ 2] 4
2 8 3 7
3 5 6 9
a4 i 10
5 5 6 12
6 I8l . . . . . ... ...
7 I
8 @ .............. @
9 | (8 [[3]] [[38]] [ [14]
10 i .............. i
11 i .............. i
12 1 .............. 1
13 |- .. _
14 L
15 @ .............. @
abbddc$
1 Y%
B a
a ¥ bbddc$
113 L
B b
a b/
1/13]|5 bddc$

-65-

ajlb bddc$
3|5 /
b
ab|b < ddc$
355 _
d
a/b|blla] <
35|56 de?
d~B
al\bj|b Bdc$
355 _
B
al[bl[b][B] <
3/5(/5/12 des
bB«+ B
ajb Bdc$
3|5 /
B
allb|| B v
3|5/ 12 des
bB«+ B
a
S Bdc$
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Using the table (cont’d)
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State|alb/c|[d|qS$S[[A][B|[C]Q
1 [ 3]5][6]] 6 6/ 2] 4
2 8 [[3] 3 7
3 5 6 9
4 i 10
5 5 6 12
6 I8l . . . . . ... ...
7 I
8 @ .............. @
9 | (8 [[3]] [[38]] [ [14]
10 i .............. i
11 i .............. i
12 1 .............. 1
13 |- .. _
14 L
15 @ .............. @
a Bdc$
113 /
B
] v
a dc
ikl v
B A C
a C dc
__3Iil4 3

-66-

wo
o

wo
o

dc$
e
d
< c$
aBCd«+ A
Ac$
e
A
< c$
e
c
< s
c—C
CS$
e
C
/'/ g
$
e
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Set of items construction for our expression grammar

ls —~ ES First Follow
2JE — E+T Sitlal 1}
3 T E|{(a} {+)$)
4T — T«F T1{Ga} {%+)3}
5 | F Fl{(a} {%+)$)
6/F — (E)
71 | a 3 E > To e (3]
— T — T e xF 29
() : - ¢ EiT 2 The above shift/reduce conflict is re-
T * I oo solved by noting that « ¢ Follow(E).
L Stat
T — o T+F 23 4 T = F e =[5
| e F x4
F -~ e (E) <25 G F = (e E) 3210
| e @ coo B E — e E+T 5210
| e T %3
(2) S - E o $§ 27 T - o T«xF 23
E — E o +T 28 | e F x4
F — o (E) 5
| e A sac 6

6 F - ae Tx|7
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Set of items construction for our expression grammar

1S —» ES$ First  Follow

2]E — E+T S1{(,a} {1

3 | T E{(,a} {+)5}

4T — T«F T{(a} {*+)5}

S | F Fi{(a} {*+,),5}

;’FT;E) (10) E > E o +T =8

= F - (Ee) 213
(7) S — ES$ ¢ = @

(11) E — E+T o R
T — T e xF 529

@ E S E+ o T =11
T — e TxF 5;” The above shift/reduce conflict is re-
| o F oo 4 solved by noting that x ¢ Follow(E).
F — o (E) 25
| e A sae 6 (12) T — TxF o |4
@ T — T+ e F soe 12 (13) F — (E) o 5[0
F — o (E) 55
| o A o0 O
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The resulting parse table

E

T

F

State| a + * ( )
'I Goto 6 Goto 5 Goto 2 Goto 3 Goto 4
State State State State State
2 Goto 8 Goto 7
State State
3 Reduce 3 Goto Reduce 3 Reduce 3
by rule State by rule by rule
4 Reduce 5 Reduce 5
by rule . . . . . . . . . . . . . . . . by rule
5 Goto 6 Goto 5 Goto 'IO Goto 3 Goto 4
State State State State State
6 Reduce 7 Reduce 7
by rule . . . . . . . . . . . . . . . . by rule
7 — . . . . . . . . . . . . . . . . —
8 Goto 6 Goto 5 Goto 'I 'I Goto 4
State State State State
9 Goto 6 Goto 5 Goto '|2
State State State
'I 0 Goto 8 Goto 'I 3
State State
'I 'I Reduce 2 Goto Reduce 2 Reduce 2
by rule State by rule by rule
'|2 Reduce 4 Reduce 4
by rule . . . . . . . . . . . . . . . . by rule
'|3 Reduce 6 Reduce 6
by rule . . . . . . . . . . . . . . . . by rule
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Using the table

State | a |+ |« |[(|) | $|E|T|F
1 6 5 2 3|4
2 8 7
3 3/[9] [[3]][3
5 6 5 10/ 3 | 4
6 I|lz1 . . .. ... ...
7 | . Z
8 6 5 11| 4
9 6 5 12
10 8 13
11 219 |[2]|[2]

12 (4] - - - 4]
13 |16 - - - - 6]

a+ax(a+a)$

Ve

a<F

+ax(a+a)$

+ax(a+a)$
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+
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Using the table

State [a [+ [«[(]) [SE[T]F EIFIT = a +a) $

1 6 5 2 3|4 lggnggg

2 8 7 B aF

3 39 [3]3] ARRERE < vy

a1 P ——— 112)l8]l119]ls]la

5 [6 5 1034 o - “j

6 |21 . . . . .. 7 E\[+]| T |[x]|(||T

e 112/l ]ls]ls3 s

8 |6 5 1] 4 (. ”j

9 |6 5 12 Ell*|| T |[x]| ]| E +a)$

10 8 13 d]12/18]lTHI9]5]L10 e

1 9 — N

m @EJ 2]]12] n E[+][ T |=[(][E|[+ < @ $
........... NHHEMBEEH y

13 |16 - - - - 6] a

=T e {?§ﬁ§§%§ﬂ ‘ )$
b

1)12//8)[11]9| (aras HEEEEREEE

-t CEI=T = E+[F . )

E|[+][ T |[=)[¢ a+a)$ 1/12]/8]/11]|9/|5]| 108/ 4
1)l28/[11]9]|5] e P
e EETIEEFT] < s
E|[+][ T |[=)[¢ +a)$ 1)|2]|8][11]|9]|5/|10]|8] |11
1/l2//8]|11l9] s S
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Using the table

State |a [+ [«[(|) | $S|E|T|F BT = ArE D s
1 |6 5 234 1]|2](8]|11]|9]|5]|10]|13
2 8 7 B (E) «F
3 3[19] [13]][3 El+[T1=[F e §
4 |5 5] 1/[2]|8][11]]9][12
5 [6 5 10]3]4 . T*F<—/T
6 I|lz1 . . .. ... ... : g ; ]T] $
7 = ... — 1]12/[8]
8 |6 5 14 - E”‘_/E
9 |6 5 12 ]5 $
10 8 13 — $/
INMIBIGEIIE T £
12 @ ........... @ ]2 _Z
13 6] - - - 6 =

CEIF T = OTE =T

113)l8 11095 108 11 )9

B E+T«E

R <y

1)/2]/8)11]|9][5]|10 / W

)
ElF [T I=[CETD 4 §
1/12][8][11]]9]|5][10]|13 : :
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SLR(k): Where

Summary of LR table construction methods

LR(0): If the table contains no conflicts,

then the grammar is unambiguous
and each state clearly indicates
precise shifts and reduces.

conflicts exist,
this method analyzes the grammar
to obtain sets of at the k symbols that
can follow each nonterminal. For an
item containing

(1) A — BC o
D - C e F
G — C o

if the k symbols that can follow A are
disjoint from each of the strings of k
symbols derivable from F, then the
shift/reduce conflict is resolved. If
the k symbols that can follow A are
different from those that can follow
G, then the reduce/reduce conflict
is resolved.

LR(k): While the SLR method analyzes

the grammar for follow information,
the LR(k) method begins with a more
elaborate set of items that already
incorporates follow information. For
example, given

@) A - { o E)
@ B - ( e E)

the SLR method would assume that
“1” or “)” could follow an E in any
context. The LR(k) method carries
info each state the relevant follow
set. Thus, the table constructed by
LR can have many more states than
the table constructed by SLR.

LALR(k): is a compromise between SLR

and LR. The table is the same size as
SLR, but conflict resolution is sharper.

The methods described above are successful only for unambiguous grammars.
Earley’s algorithm (1, 16) can construct parses (and derivations) for ambiguous
grammars. Note that LR parsing is more powerful that LL parsing.
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What happens when LR(k) constructions fail?

If table construction reveals an inadequate state, one of the following must hold:

The grammar is ambiguous.

If the language is not itself inherently
ambiguous, then perhaps the grammar
can be modified to generate the same
language, but unambiguously.

This is a task for human intelligence, as
it’s provably undecidable (i.e., there is
no mechanical process to decide) that
a grammar is ambiguous.

A method that works well is to identify
the inadequate states, and then work
info and out of the state to generate a
string that has more than one derivation.
The conflicts (identified, for example, by
YACC) are helpful in this process.

Copyright ©1994 Ron K. Cytron. All rights reserved

Underfueled table construction

1. Generally, SLR is more powerful than
LR(0); LALR is more powerful than SLR;
LR is the most powerful (canonical)
bottom-up parsing method.

2. Canonical LR parsers must form their
reductions on top-of-stack. For
some grammars (an example fol-
lows), no bounded amount of looka-
head (bounded at table construc-
tion time) suffices to disambiguate
some state.

A good exercise is to attempt adding
nested procedures into the ANsSI C gram-
mar. foo(,,,...,) { becomes prob-
lematic: One can’t tell whether f 0o is a
procedure definition or invocation until
the arbitrarily distant opening brace is
seen.

- 74 - SIGPLAN "94 COMPILER CONSTRUCTION TUTORIAL



ldentifying the cause of ambiguity

E - E+E
| a

YACC finds a shift/reduce conflict in the following state:

4) E — E ¢ +E 23
E - E+E o rockco
Lining up the “dots” shows we can reach this state with the prefix ...E + E, and one

rule shows how to continue this stringto...E+E + E.... We can now easily construct
two parses: one assumes state 4 shifts (bottom), one assumes state 4 reduces (fop).
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A grammar that is not LR(K) for any k

S - Aa

| Bb /\
A - Ad

| d ? a?b

B —- Bd /\
? d
d

| d
In the above grammar, a reduction must
occur for the first “d” in the input, but
the lookahead necessary for deciding
whether to reduce A— d or B— d could
be arbitrarily large.

N
N
d

for A and B were reversed, then the
grammar is LR(1), but the stack grows
arbitrarily large at parse time.

f)
If the right-hand sides of the first rules {
d

Often the grammar can be modified to become LR(k), since this problem usually
pertains to how the language is structured by the grammar.
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Syntax + Semantics = Language

While the grammar for alanguage enforces syntactic constraints on accepted strings,
some language issues are often postponed until after parsing.

For example, some language definitions contain rules that cannot be enforced by

any context-free mechanism.

The most common e