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What is a language translator?

You type: cc foo.c: : :What happens?

ComputerInput Answer

Binder / Loader

Object

ANSI C Compiler

Source Program

Language: Vehicle (architecture) for transmitting information between components
of a system. For our purposes, a language is a formal interface. The goal of every
compiler is correct and efficient language translation.
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The process of language translation

1. A person has an idea of how to compute something:fact(n) = 8><>: 1 if n � 0n� fact(n� 1) otherwise

2. An algorithm captures the essence of the computation:fact(n) = if n � 0 then 1 else n� fact(n� 1)

Typically, a pseudocode language is used, such as “pidgin ALGOL”.

3. The algorithm is expressed in some programming language:

int fact(int n) {
if (n <= 0) return(1);
else return(n*fact(n-1));

}

We would be done if we had a computer that “understood” the language directly.
So why don’t we build more C machines?

a) How does the machine know it’s
seen a C program and not a Shake-
speare sonnet?

b) How does the machine know what is
“meant” by the C program?

c) It’s hard to build such machines.
What happens when language ex-
tensions are introduced (C++)?

d) RISC philosophy says simple ma-
chines are better.
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Finally: : :

A compiler translates programs written in a source language into a target language.
For our purposes, the source language is typically a programming language—
convenient for humans to use and understand—while the target language is typically
the (relatively low-level) instruction set of a computer.

Source Program

main() {
int a;

a += 5.0;
}

Target Program (Assembly)
_main:

!#PROLOGUE# 0
sethi %hi(LF12),%g1
add %g1,%lo(LF12),%g1
save %sp,%g1,%sp
!#PROLOGUE# 1
sethi %hi(L2000000),%o0
ldd [%o0+%lo(L2000000)],%f0
ld [%fp+-0x4],%f2
fitod %f2,%f4
faddd %f4,%f0,%f6
fdtoi %f6,%f7
st %f7,[%fp+-0x4]

Running the Sun cc compiler on the above source program of 32 characters
produces the assembly program shown to the right. The bound binary executable
occupied in excess of 24 thousand bytes.
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Structure of a compiler

Optimizer

Generation
Code

Semantics

Front
End

Middle
End

Back
End

Executable
Text

Parser

Scanner

Program Front End

Scanner: decomposes the input stream
into tokens. So the string “a += 5.0;”
becomes

a + = 5:0 ;

Parser: analyzes the tokens for correct-
ness and structure:

+ =

a 5.0

Semantic analysis: more analysis and
type checking:

5.0

+ =

a flt->int
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Structure of a compiler

Middle End

5.0

+ =

a flt->int

Themiddle endmight eliminate thecon-
version, substituting the integer “5” for
the float “5.0”.

+ =

a 5

Code Generation

The code generator can significantly af-
fect performance. There aremanyways
to compute “a+=5”, some less efficient
than others:

while

�t 6= a+ 5

�

dot rand()
oda t

While optimization can occur throughout the translation process, machine-
independent transformations are typically relegated to themiddle-end, while instruc-
tion selectionandothermachine-specific activities arepushed intocodegeneration.
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Bootstrapping a compiler

Often, a compiler is written in it “itself”. That is, a compiler for PASCAL may be written
in PASCAL. How does this work?

Initial Compiler for L on Machine M
1. The compiler can be written in a

small subset of L, even though
the compiler translates the full lan-
guage.

2. A throw-away version of the sub-
set language is implemented on M .
Call this compiler �.

3. The L compiler can be compiled us-
ing the subset compiler, to generate
a full compiler �.

4. The L compiler can also compile
itself. The resulting object 
 can be
compared with � for verification.

Porting the Compiler

1. On machine M , the code generator
for the full compiler is changed to
target machine N .

2. Any program in L can now be cross-
compiled fromM to N .

3. The compiler can also be cross-
compiled to produce an instance of
 that runs on machine N .

If the run-time library is mostly written inL, or in an intermediate language of �,
then these can also be translated for N
using the cross-compiler.
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What else does a compiler do?

if (p)
a = b + (c

else {d = f;
q = r;

Error detection. Strict language rules, consistently

enforced by a compiler, increase the likelihood that a

compiler-approved source program is bug-free.

Error diagnosis. Compilers can often assist the

program author in addressing errors.

Error repair. Some ambitious compilers go so far as to

insert or delete text to render the program executable.

for (i=1; i<=n; ++i)
{

a[i] = b[i] + c[i]
}

Program optimization. The target produced

by a compiler must be “observably equivalent” to the

source interpretation. An optimizing compiler attempts

to minimize the resource constraints (typically time and

space) required by the target program.

Program instrumentation. The target program

canbeaugmentedwith instructionsanddata to provide

information for run-time debugging and performance

analysis. Language features not checkable at compile-

time are often checked at run-time by code inserted by

the compiler.

Sophisticated error repair may include symbol insertion, deletion, and use of inden-

tation structure.

Program optimization can significantly decrease the time spent on array index
arithmetic. Since subscript ranges cannot in general be checked at compile-time,
run-time tests may be inserted by the compiler.
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Compiler design points – aquatic analogies

Powerboat Turbo–?. These compilers are fast, load-

and-go. They perform little optimization, but typically

offer good diagnostics and a good programming envi-

ronment (sporting a good debugger). These compilers

are well-suited for small development tasks, including

small student projects.

Sailboat BCPL, Postscript. These compilers can do neat

tricks but they require skill in their use. The compilers

themselves are often small and simple, and therefore

easily ported. They can assist in bootstrapping larger

systems.

Tugboat C++ preprocessor, RATFOR. These compilers

are actually front-ends for other (typically larger) back-

ends. The early implementations of C++ were via a

preprocessor.

Barge Industrial-strength. These compilers are developed

and maintained with a company’s reputation on the

line. Commercial systems use these compilers because

of their integrity and the commitment of their sponsoring

companies to address problems. Increasingly these

kinds of compilers are built by specialty houses such as

Rational, KAI, etc.

Ferry Gnu compilers. These compilers are available via

a General Public License from the Free Software Foun-

dation. They are high-quality systems and can be built

upon without restriction.

Another important design issue is the extent to which a compiler can respond
incrementally to changes.
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Compilers are taking over the world!

While compilers most prevalently participate in the translation of pro-
gramming languages, some form of compiler technology appears in
many systems:

Text processing Consider the “?-roff” text processing pipe:

PIC! TBL! EQN! TROFF

or the LATEX pipe:
LATEX! TEX

each of which may produce

DVI! POSTSCRIPT

Silicon compilers Such systems accept circuit specifications and com-
pile these into VLSI layouts. The compilers can enforce the appro-
priate “rules” for valid circuit design, and circuit libraries can be
referenced like modules in software library.
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Compiler design vs. programming language design

Programming languages So compilers
have offer

Non-locals Displays, static links
Recursion Dynamic links

Dynamic Storage Garbage collection
Call-by-name Thunks

Modular structure Interprocedural analysis
Dynamic typing Static type analysis

It’s expensive for So some languages
a compiler to offer avoid that feature

Non-locals C
Call-by-name C, PASCAL

Recursion FORTRAN 66
Garbage collection C

In general, simple languages such as C, PASCAL, and SCHEME have been more
successful than complicated languages like PL/1 and ADA.
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Language design for humans

Procedure foo(x; y)
declarex; y integera; b integer?p integerp rand() ? &a : &b?p x + y

end

Syntactic simplicity. Syntactic signposts are

kept to a minimum, except where aesthetics dictate

otherwise: parentheses in C, semicolons in PASCAL.

Resemblance to mathematics. Infix nota-

tion, function names.

Flexible internal structures. Nobodywould use

a language in which one had to predeclare how many

variables their program needed.

Freedom from specifying side-effects.
What happens when p is dereferenced?

Programming language design is often a compromise between ease of use for
humans, efficiency of translation, and efficiency of target code execution.
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Language design for machines

(SymbolTable
(NumSymbols 5)
(Symbol

(SymbolName x)
(SymbolID 1)

)
(Symbol

(SymbolName y)
(SymbolID 2)

)
...

)
(AliasRelations

(NumAliasRelations 1)
(AliasRelation

(AliasID 1)
(MayAliases 2 a b)

)
)

(NodeSemantics
(NodeID 2)
(Def
(DefID 2)
(SymbID ?)
(AliasWith 1)
(DefValue
(+
(Use

(UseID 1)
(SymbID x)

)
(Use

(UseID 2)
(SymbID y)

)
)

)
)

)

We can require much more of our intermediate languages, in terms of details and
syntactic form.
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Compilers and target instruction sets

How should we translate X = Y + Z

In the course of its code generation, a
simple compiler may use only 20% of
a machine’s potential instructions, be-
cause anomalies in an instruction set
are difficult to “fit” into a code gener-
ator.

Consider two instructions

ADDREG R1 R2 R1  R1 +R2

ADDMEM R1 Loc R1  R1 + ?Loc
Each instruction is destructive in its first
argument, so Y and Z would have to be
refetched if needed.

LOAD 1 Y
ADDMEM 1 Z
STORE 1 X

A simplermodel would be to do all arith-
metic in registers, assuming a nonde-

structive instruction set, with a reserved
register for results (say, R0):

LOAD 1 Y
LOAD 2 Z
LOADREG 0 1
ADDREG 0 2
STORE 0 X

This code preserves the value of Y andZ in their respective registers.

A popular approach is to generate code assuming the nondestructive paradigm,
and then use an instruction selector to optimize the code, perhaps using destructive
operations.
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Current wisdom on compilers and architecture

Architects should design “orthogonal” RISC instruction sets, and let the optimizer
make the best possible use of these instructions. Consider the program

for i 1 to 10 do X  A[i]

where A is declared as a 10-element array (1 : : : 10).
The VAX has an instruction essentially of
the form Index(A; i; low; high)
with semantics

if (low � i � high) then
return

�A + 4� i�
else

return (error)
fi

Internally, this instruction requires two
tests, one multiplication, and one addi-
tion.

However, notice that the loop does not
violate the arraybounds ofA. Moreover,
in moving from A[i] to A[i + 1], the new
address can be calculated by adding 4

to the old address.

While the useof an Index instructionmay
seem attractive, better performance
can be obtained by providing smaller,
faster instructions to a compiler capable
of optimizing their use.
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A small example of language translationL(Add) =
sums of two digits, expressed

expressed in the usual (infix)

notation

That’s not very formal. What do we
mean by this?f 0+ 4; 3 + 7; : : : g
input(s)
case (s)
of("0+0") return(OK)
...
of("9+9") return(OK)
default return(BAD)

endcase

The program shown on the left recog-
nizes the Add language. Suppose we
want to translate strings in Add into their
sum, expressed base-4.
input(s)
case (s)
of("0+0") return("0")
...
of("5+7") return("30")
...
of("9+9") return("102")
default oops(BAD)

endcase

A language is a set of strings. With 100 possibilities, we could easily list all strings in this
(small) language. This approach seems like lots of work, especially for languages with
infinite numbers of strings, like C. We need a finite specification for such languages.
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Grammars

The grammar below generates the Add
language:

S ! D + D
D ! 0j 1j 2

...j 9

A grammar is formallyG = (V;�; P; S)
whereV is the set of nonterminals. These ap-

pear on the left side of rules.� is an alphabet of terminal symbols,
that cannot be rewritten.P is a set of rewrite rules.S is the start or goal symbol.

The process by which a terminal string is
created is called a derivation.

S ) D + D) 8 + D) 8 + 4

This is a leftmostderivation, since a string
of nonterminals is rewritten from the left.
A tree illustrates how the grammar and
the derivation structure the string:

+

S

D

8 4

D

The above could be called a derivation
tree, a (concrete) syntax tree, or a parse
tree.

Strings in L(G) are constructed by rewriting the symbol S according to the rules of P
until a terminal string is derived.
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Sums of two numbers

Consider the set of strings that represent the sum of two numbers, such as 405 + 26.
We could rewrite the grammar, as shown below:

S ! D + D
D ! D dj d
d ! 0j 1

...j 9

D

D d

d

4

0

+

S

D D

d D d

d
5

2

6

Another solution would be to have a separate tokenizing process feed “D”s to the

grammar, so that the grammar remains unchanged.

4 0 5 + 2 6

+ DD

Scanner

Parser

Input
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Scanners

Scanners are often the ugliest part of a compiler, but when cleverly designed, they
can greatly simplify the design and implementation of a parser.

Typical tasks for a scanner:� Recognize reserved keywords.� Find integer and floating-point con-
stants.� Ignore comments.� Treat blank space appropriately.� Find string and character constants.� Find identifiers (variables).

The C statement

if (++x==5) foo(3);

might be tokenized as

if ( ++ ID == 5 ) ID ( int )

Unusual tasks for a scanner:� In (older) FORTRAN, blanks are op-
tional. Thus, the phrases

DO10I=1,5 and DO10I=1.5

are distinguished only by the
comma vs. the decimal. The first
statement is the start of a DO loop,
while the second statement assigns
the variable DO10I.� In C, variables can be declared
by built-in or by user-defined types.
Thus, in

foo x,y;

the C grammar needs to know that
foo is a type name, and not a vari-
able name.

The balance of work between scanner and parser is typically dictated by restrictions
of the parsing method and by a desire to make the grammar as simple as possible.
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Scanners and Regular Languages

Most scanners are based on a simple
computational model called the finite-

state automaton.

6 4

5

blanks

1

3 2

ch

ch+dig

dig

dig

blank
ch

blank

These machines recognize regular lan-

guages.

To implement a finite-state transducer
one begins with a GOTO table that de-
fines transitions between states:

GOTO table
State ch dig blank
1 3 2 1
2 5 2 4
3 3 3 6
4 3 2 4
5 5 5 5
6 3 2 6

which is processed by the driverstate 1

while

�
true

�
doc NextSym()

/? Do action ACTION[state][c] ?/state GOTO[state][c]
od

Notice the similarity between states 1, 4, and 6.
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Transduction

While the finite-state mechanism recognizes appropriate strings, action must now be
taken to construct and supply tokens to the parser. Between states, actions are
performed as prescribed by the ACTION table shown below.

ACTION table
State ch dig blank
1 1 2 3
2 4 5 6
3 7 7 8
4 1 2 3
5 4 4 4
6 1 2 3

Actions

1. ID = ch
2. Num = dig
3. Do nothing

4. Error

5. Num = 10�Num+ dig

6. return NUM

7. ID = IDjjch
8. return ID

Technically, the ability to perform arbitrary actions makes our tokenizer more pow-
erful than a finite-state automaton. Nonetheless, the underlying mechanism is quite
simple, and can in fact be automatically generated: : : .
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Regular grammars

6 4

5

blanks

1

3 2

ch

ch+dig

dig

dig

blank
ch

blank

1 ! blank 1j ch 3j dig 2
2 ! dig 2j ch 5j blank 4
3 ! ch 3j dig 3j blank 6
4 ! �
6 ! �

In a regular grammar, each rule is of the formA ! a AA ! a
where A 2 V and a 2 (� [ f� g).
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LEX as a scanner

First, define character classes:

ucase [A-Z]
lcase [a-z]
letter (fucaseg|flcaseg)
zero 0
nonzero [1-9]
sign [+-]
digit (fzerog|fnonzerog)
blanks [ ntnf]
newline nn

Next, specify patterns and actions:fLg(fLg|fDg)* f String(yytext);
return(ID);g

‘‘++’’ f return(IncOP);g
In selecting which pattern to apply, LEX
uses the following rules:

1. LEX always tries for the longest
match. If any pattern can “keep
going” then LEX will keep consum-
ing input until that pattern finishes or
“gives up”. This property frequently
results in buffer overflow for improp-
erly specified patterns.

2. LEX will choose the pattern and ac-
tion that succeeds byconsuming the
most input.

3. If there are ties, then the pattern
specified earliest to LEX wins.

The notation used above is regular expression notation, which allows for choice,
catenation, and repeats. One can show by construction that any language
accepted by a finite-state automaton has an equivalent regular expression.
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A comment

An interesting example is the C-like
comment specification, which might be
tempting to specify as:

"/-" .* "-/"

But in a longest match, this pattern will
match the beginning of the first com-
ment to the end of the last comment,
and everything in between. If LEX’s
buffers don’t overflow, most of the input
program will be ignored by this faulty
specification.

A better specification can be deter-
mined as follows:

1. Start with the wrong specification.

2. Construct the associated determin-
istic FSA.

3. Edit the FSA to cause acceptance at
the end of the first comment (shown
below).

4. Construct the regular expression as-
sociated with the resulting FSA.

/ -
-

c

/,c -

/

with the corresponding regular expression

/- [ (/|c)* -(-)* c ]* (/|c)* -(-)* /
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Teaching regular languages and scanners

Classroom

1. Motivate the study with examples
from programming languages and
puzzles (THINK-A-DOT, etc.).

2. Present deterministic FSA (DFA).

3. Present nondeterministic FSA (NFA).

4. Show how to construct NFAs from
regular expressions.

5. Show good use of the empty string
(� or �).

6. Eliminate the empty string.

7. Eliminate nondeterminism.

8. Minimize any DFA.

9. Construction of regular expressions
from DFA.

10. Show the correspondence between
regular grammars and FSAs.

11. Thepumping lemmaandnonregular
languages.

Projects and Homework

1. Implement THINK-A-DOT.

2. Check if a YACC grammar is regular.
If so, then emit the GOTO table for a
finite-state driver.

3. Augment the above with ACTION

clauses.

4. Process a YACC file for reserved key-
word specifications:

%token <rk> then

and generate the appropriate pat-
tern and action for recognizing
these:

"then" f return(THEN); g
5. Show that regular expression nota-

tion is itself not regular.

Some useful resources: [24, 28, 16, 2, 26].
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Nonregular languages

To grow beyond regular languages, we now allow a rule’s right-hand side to contain
any string of terminals or nonterminals.

A ! ( A )j x

describes the language (nx)n.

x

A

A

A

A

((( ) ) )

Suppose that some finite-state machineM of k states can recognize f (nx)n g.
(((...(x)...)))

k states

Consider the input string z = (kx)k. After
processing the kth ‘(’, some state must
have been visited twice. By repeating
the portion of z causing this loop, we
obtain a string(k(jx)k; k � 0; j > 0

which is not in the language, but is ac-
cepted byM .

Since the proof did not depend on any particular k, we have shown that no finite-
state machine can accept exactly this language.
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Some more sums

Grammar

E ! E + Ej a

Leftmost derivation

E ) E +E) E+E +E) a+E+E) a+a+E) a+a+a

Another leftmost derivation

E ) E +E) a+E) a+E+E) a+a+E) a+a+a

a + a + a

E

E E

E

E

E E E

E

E

If the same string has two parse trees by a grammar G, then G is ambiguous.
Equivalently, there are two distinct leftmost derivations of some string. Note that
the language above is regular.
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Ambiguity

The parse tree below structures the input
string as (a + (a + a))

E E E

E

E

a + a + a

The parse tree below structures the input
string as ((a + a) + a)

a + a + a

E

E E

E

E� With addition, the two expressions may be semantically the same. What if the a’s
were the operands of subtraction?� How could a compiler choose between multiple parse trees for a given string?� Unfortunately, there is (provably) no mechanical procedure for determining if a

grammar is ambiguous; this is a job for human intelligence. However, compiler

construction tools such as YACC can greatly facilitate the location and resolution

of grammar ambiguities.� It’s important to emphasize the difference between a grammar being ambigu-

ous, and a language being (inherently) ambiguous. In the former case, a

different grammar may resolve the ambiguity; in the latter case, there exists

no unambiguous grammar for the language.
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Syntactic ambiguity

A great source of humor in the English
language arises from our ability to con-
struct interesting syntactically ambigu-
ous phrases:

1. I fed the elephant inmy tennis shoes.
What does “in my tennis shoes” modify?

(a) Was I wearing my tennis shoes while feeding the
elephant?

(b) Was the elephant wearing or inside my tennis
shoes?

2. The purple people eater. What is purple?

(a) Is the eater purple?

(b) Are the people purple?

Suppose we modified the grammar for
C, so that any f: : : g block could be
treated as a primary value.f int i; i=3*5; g + 27;

would seem to have the value 42. But
if we just rearrange the white space, we
can getfint i; i=3*5; g

+27;

which represents two statements, the
second of which begins with a unary
plus.

A good assignment along these lines is to modify the C grammar to allow this simple
language extension, and ask the students to determine what went wrong. The
students should be fairly comfortable using YACC before trying this experiment.
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Semantic ambiguity

In English, we can construct sentences
that have only one parse, but still have
two different meanings:

1. Milk drinkers turn to powder. Are more

milk drinkers using powdered milk, or are milk drinkers

rapidly dehydrating?

2. I cannot recommend this student too
highly. Do words of praise escape me, or am I

unable to offer my support.

In programming languages, the lan-
guage standard must make the mean-
ing of such phrases clear, often by ap-
plying elements of context.

For example, the expressiona + b

could connote an integer or floating-
point sum, depending on the types ofa and b.
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A nonambiguous grammar

E ! ( Plus E E )j ( Minus E E )j a

It’s interesting to note that the above grammar, intended to generate LISP-like
expressions, is not ambiguous.

Plus( ( Plus a a ) a )

E E

E

E

E

is the prefix equivalent of((a + a) + a) ( Plus a a )Plus( )a

EE

E

E

E

is the prefix equivalent of(a + (a + a))
These are two different strings from this language, each associated explicitly with a
particular grouping of the terms. Essentially, the parentheses are syntactic sentinels
that simplify construction of an unambiguous grammar for this language.
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Addressing ambiguity

E ! E + Ej a

We’ll try to rewrite the above grammar, so that in a (leftmost) derivation, there’s only
one rule choice that derives longer strings.

E ! E + aj E - aj a

These rules are left recursive, and the
resulting derivations tend to associate
operations from the left:

a + a + a

E

E

E

E ! a + Ej a - Ej a

The grammar is still unambiguous, but
strings are now associated from the
right:

E

a + a + a

E

E
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Addressing ambiguity (cont’d)

Our first try to expand our grammar
might be:

E ! E + aj E � aj a

a a a

E

E

E

+ *

The above parse tree does not reflect
the usual precedence of � over +.

To obtain sums of products, we revise our
grammar:

E ! E + Tj T

This generates strings of the formT + T + : : :+ T

WenowalloweachT to generate strings
of the form a � a � : : : � a

E ! E + Tj T
T ! T � aj a

a a a+ *

T

T

E

T

E
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Translating two-level expressions

Since our language is still regular, a finite-state machine could do the job. While the

machine

a

+ *
$

A B C,
could do the job, there’s not enough “structure”

to this machine to accomplish the prioritization of � over +. However, the machine
below can do the job.

/ 0

+ / 2

a / 1 a / 7

* / 3

a / 4

* / 5

$ / 9

$ / 8

+ / 6

0 Sum = 0 5 Prod = Prod�Acc
1 Acc = a 6 Sum = Sum + (Prod �Acc); Prod = 1

2 Sum = Sum +Acc 7 Acc = a
3 Prod = Prod�Acc 8 Sum = Sum +Acc
4 Acc = a 9 Sum = Sum + (Prod �Acc); Prod = 1
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Let’s add parentheses

While our grammar currently structures inputs appropriately for operator priorities,
parentheses are typically introduced to override default precedence. Since we
want a parenthesized expression to be treated “atomically”, we now generate sums
of products of parenthesized expressions.

E ! E + Tj T
T ! T � Fj F
F ! ( E )j a

This grammar generates a nonregular
language. Therefore, we need a more
sophisticated “machine” to parse and
translate its generated strings.

E

TE

a a ( a

F

E

E T

T F

F

+*+

T

a )

F

T

F

The grammar we have developed thus far is the textbook “expression grammar”. Of
course, we shouldmake a into a nonterminal that can generate identifiers, constants,
procedure calls, etc.
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Beyond finite-state machines

For a rule of the form

A ! b C

we developed a finite-state mechanism
of the form

A C
b

After arrival at C, there is no need to
remember how we got there.

Now, with a rule such as

F ! ( E )

we cannot just arrive at an E and for-
get that we need exactly one closing
parenthesis for each opening one that
got us there.

Instead of “going to” a state E based
on consuming an opening parenthe-
sis, suppose we called a procedure E

to consume all input ultimately derived
from the nonterminal:

Procedure F ()
call Expect(OpenParen)

call E()
call Expect(CloseParen)

end

This style of parser construction is called
recursive descent. The procedure as-
sociated with each nonterminal is re-
sponsible for directing the parse through
the right-hand side of the appropriate
production.

1. What about rules that are left-recursive?

2. What happens if there is more than one rule associated with a nonterminal?
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Eliminating left recursion – grammar transformation

Original

A ! A �j �
α

A

α

A

α

A

α

A

α

A

β

A

Transformed

A ! � A0A0 ! � A0 | �

A’

α A’

α A’

α
A’

α

A’

A

β

The two grammars generate the same language, but the one on the right generates
the � first, and then a string of �s, using a rule that is right recursive instead of left
recursive.
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The transformed expression grammar

E ! T E0E0 ! + T E0E0 ! - T E0j �
T ! F T 0T 0 ! � F T 0T 0 ! / F T 0j �
F ! ( E )j a

Which rule to choose?

+a*a+a*a

T E’

And what about �?
F

E

T

F T’

E’

( a )
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First setsFirst(�) = 8>>>>><>>>>>: f� g if � 2 �S(�!!i)2P First(!i) if � 2 Vf� g if � = �First(�1 : : : �L) = [j j 8j�1k=1(�2First(�k))First(�j)

A ! B Cj E F G Hj H
B ! b
C ! �j c
E ! �j e
F ! C E
G ! g
H ! �j h

! First(!)
H fh; � g

G f g g
C f c; � g
B f b g
E f e; � g
F f c; e; � g
A f b; e; c; g; h; � g
BC f b g

EFGH f e; c; g g
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Follow sets

1. Initially set Follow(N ) = ;; 8 N 2 V .

2. Given production A! �B�, setFollow(B) = Follow(B) [ (First(�)� f� g)

3. Given production A! �B�, where � 2 First(�), setFollow(B) = Follow(B) [ Follow(A)
A ! B Cj E F G Hj H
B ! b
C ! �j c
E ! �j e
F ! C E
G ! g
H ! �j h

N Follow(N)
A f g

B First(C) [ Follow(A) = f c g

F First(G) = f g g

C Follow(A) [ First(E)[ Follow(F ) = f e; g g

E First(F ) [ First(G) = f c; e; g g

G First(H) [ Follow(A) = fh g
H Follow(A) = f g
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Recursive descent parser generation

Procedure NonTermN
if

�LookAhead() 2 First(!1);where (N ! !1) 2 P �

then

/* Use !1 to generate calls to Expect() and other nonterminals */

else

if

�LookAhead() 2 Follow(N ) and (N ! �) 2 P �
then

return ()

else

/* error */

fi

fi

end
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Recursive descent – Example

S ! A C $
C ! cj �
A ! a B C dj B Qj �
B ! b Bj d
Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g
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The generated procedures

S ! A C $
C ! cj �
A ! a B C dj B Qj �
B ! b Bj d
Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g
Procedure S()

if

�LookAhead() 2 f a; b; d; c; $ g� then
call A()

call C()

call Expect($)

else

/* error */

fi

end

Procedure C()
if

�LookAhead() 2 f c g� then
call Expect(c)

else

if

�Lookahead() 62 f d; $ g� then
/* error */

fi

fi

end
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The generated procedures (cont’d)

S ! A C $
C ! cj �
A ! a B C dj B Qj �
B ! b Bj d
Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g
Procedure A()

if

�LookAhead() 2 f a g� then
call Expect(a)

call B()

call C()

call Expect(d)

else

if

�LookAhead() 2 f b; d g� then
call B()
call Q()

else

if

�LookAhead() 2 f c; $ g� then
return ()

else

/* error */

fi

fi

fi

end
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The generated procedures (cont’d)

S ! A C $
C ! cj �
A ! a B C dj B Qj �
B ! b Bj d
Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g
Procedure B()

if

�LookAhead() 2 f b g� then
call Expect(b)

call B()

else

if

�LookAhead() 2 f d g� then
call Expect(d)

else

/* error */

fi

fi

end

Procedure Q()
if

�LookAhead() 2 f q g� then
call Expect(q)

else

/* error */

fi

end
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Recursive descent – expression grammar

E ! T E0E0 ! + T E0E0 ! - T E0j �
T ! F T 0T 0 ! � F T 0T 0 ! / F T 0j �
F ! ( E )j a

First Follow
E f (; a g f ); $ gE0 f+;�g f ); $ g
T f (; a g f+;�; ); $gT 0 f �; / g f+;�; ); $g
F f (; a g f �; /;+;�; ); $g

Procedure E0

if

�LookAhead(+)� then
call Expect(+)

call T

call E0

else

if

�LookAhead(�)� then
call Expect(�)

call T
call E0

else

if

�LookAhead($; ’)’)� then
return ()

else

call Error()
fi

fi

fi

end
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Maintaining lookahead

Proceduremain()LAtok GetNextToken()
call S()

end

Function LookAhead() : token
return (LAtok)

end

Procedure Expect(tok)
if (LAtok = tok) thenLAtok GetNextToken()
else

/* error */

fi

end

A lookahead of k tokens is maintained
by appropriately buffering the input.

Technically, k lookahead is equivalent
in power to a single token of looka-
head. The proof is constructive: each
permutation of k symbols is encoded as
a single token.

The Expect(tok) procedure first com-
pares the incoming token against tok,
and then advances input into the looka-
head buffer.
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Recursive descent – correctness and properties

When is our recursive descent parser
construction successful? If the gram-
mar involves any left-recursion, then our
constructionmethod will create aparser
containing an infinite loop. So, we re-
quire that the grammar be free of left-
recursion.

The grammar transformation technique
covered earlier can help eliminate left-
recursion.

Also, we require that the parser operate
deterministically: actions taken at each
step make progress toward completion,
so that backtracking is not necessary.

Thus, given a set of rules for nonterminal NN ! !1j ...j !n
we require

1. \i First(!i) = f g
2. If � = !j; 1 � j � n, then we also require[i (Follow(N ) \ First(!i)) = f g
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Recursive descent and leftmost derivations

Let’s examine how our recursive descent parser recognizes the string “abbddc$”

S

A C $

B C da

b B

b B

d

c

The procedure activations trace a left-
most derivation of the string. We call this
style of parsing LL, because it uses a Left-
most scan of the input and produces a
Left-most derivation.

1 S ! A C $
2 C ! c
3 j �

4 A ! a B C d
5 j B Q
6 j �

7 B ! b B
8 j d
9 Q ! q

S ) A C $) a B C d C $) a b B C d C $) a b b B C d C $) a b b d C d C $) a b b d d C $) a b b d d c $

In fact, the record of the parse is simply the order in which the grammar rules are
applied: 1 4 7 7 8 3 2
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Error repair

Good programming languages are de-
signed with a relatively large “dis-
tance” between syntactically correct
programs, to increase the likelihood that
conceptual mistakes are caught as syn-
tactic errors.

Error repair usually occurs at two levels:

Local: repairs mistakes with little global
import, such as missing semicolons
and undeclared variables.

Scope: repairs the program text so that
scopes are correct. Errors of this
kind include unbalanced parenthe-
ses and begin/end blocks.

Repair actions can be divided into in-

sertions and deletions. Typically the
compiler will use some lookahead and
backtracking in attempting to make
progress in the parse. There is great vari-
ation among compilers, though some
languages (PL/C) carry a tradition of
good error repair. Goals of error repair
include:

1. No input should cause the compiler
to collapse.

2. Illegal constructs are flagged.

3. Frequently occurring errors are re-
paired gracefully.

4. Minimal stuttering or cascading of
errors.

LL-style parsing lends itself well to er-
ror repair, since the compiler uses the
grammar’s rules to predict what should
occur next in the input.
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Augmenting recursive descent parsers for error recovery

Recursive and LL parsers are often called predictive, because they operate by
predicting the next step in a derivation.

Suppose the parser is operating in procedure A for some nonterminal A. If an error
occurs, it seems reasonable to recover by skipping to a symbol that could follow A,
and then return.

E ! T E0E0 ! + T E0E0 ! - T E0j �
T ! F T 0T 0 ! � F T 0T 0 ! / F T 0j �
F ! ( E )j a

First Follow
E f (; a g f ); $ gE0 f+;�g f ); $ g
T f (; a g f+;�; ); $gT 0 f �; / g f+;�; ); $g
F f (; a g f �; /;+;�; ); $g

Procedure E0(StopSet)

if

�LookAhead(+)� then
call Expect(+)
call T (f+;�g [ StopSet)

call E0(StopSet)
else

if

�LookAhead($; ’)’)� then
return ()

else

call ErrorRecover(StopSet)
fi

fi

end
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Table-driven LL(k) parsing

Our recursive descent parser contained a procedure for each nonterminal. The
generation of these procedures could be automated—through the construction and
testing of First and Follow sets—for any grammar free of left recursion.

Another equally automatable approach is to use a simple parsing engine that is
driven by tables constructed by similar analysis of the grammar.

Input

Grammar

Analyzer
Grammar

Table

Parsing Engine

Stack

LL(k)

The parsing engine begins by pushing the start symbol S onto the stack. Each

subsequent action is one of the following:

Match: pairs an input symbol a an a on top-of-stack.

Apply: replaces the nonterminal N with !, where (N ! !) 2 P .
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Match

If the top-of-stack contains the terminal symbol “a”, then the parsing engine must
find an “a” as the next input symbol; the stack is popped, and the input is advanced.

Before

a a

After

� If a match simultaneously empties the stack and exhausts the input stream, then

the string is accepted by the parser.� If a match is attempted, but the symbols disagree, then an error is declared.
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Apply

If the top-of-stack contains a nonterminal N , then the parsing engine must choose
the appropriate rule for N , say N ! ��
. The stack is popped of symbol N , and the
symbols �, �, and 
 are pushed onto the stack, such that � is the new top-of-stack.

Before

aN

After

aα
β
γ

Since a match is always required when a terminal is exposed on top-of-stack, the
only information that must be coded in our table is the rule that should be applied
when a nonterminal appears on top-of-stack. As with our recursive descent parser,
this decision can be based on k symbols of lookahead into the input stream.
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Constructing the table

1 S ! A C $
2 C ! c
3 j �
4 A ! a B C d
5 j B Q
6 j �
7 B ! b B
8 j d
9 Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g

Lookahead

NonTerm a b c d q $

S 1 1 1 1 1

C 2 3 3

A 4 5 6 5 6

B 7 8

Q 9

The nonblank entries in the above table indicate the number of the rule that should
be applied, given a nonterminal on top-of-stack and an input symbol as lookahead.
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Using the table

1 S ! A C $
2 C ! c
3 j �
4 A ! a B C d
5 j B Q
6 j �
7 B ! b B
8 j d
9 Q ! q

Lookahead
NonTerm a b c d q $

S 1 1 1 1 1

C 2 3 3

A 4 5 6 5 6

B 7 8

Q 9

Below is shown the stack activity in parsing the input string “abbddc$”.

S

A

C

$

1

a

B

C

d

C

$

4

b

B

C

d

C

$

7

b

B

C

d

C

$

7

d

C

d

C

$

8

d

C

$

3

c

$

2

Input string

a b b d d c $
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Bottom-up parsing

S

A C $

B C da

b B

b B

d

c

A bottom-up parse is essentially a right-
most derivation, run in reverse. Instead
of replacing a nonterminal by a string,
we recognize the string as reducing to
the nonterminal.

1 S ! A C $
2 C ! c
3 j �

4 A ! a B C d
5 j B Q
6 j �

7 B ! b B
8 j d
9 Q ! q

S ) A C $) A c $) a B C d c $) a B d c $) a b B d c $) a b b B d c $) a b b d d c $

The parsing engine issues the following instructions:

shift: a symbol is moved from input to top-of-stack.

reduce r: the stack is modified by applying rule r.
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Shift

Before

a

After

a

� Like the top-down parser, the bottom-up parser checks for errors on a shift. The

parse table we shall construct indicates when a shift is error-free.� Actually, instead of pushing a symbol onto the stack, we push a state, which

indexes the parse table and represents the current possibilities of the parse.
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Reduce

Before

aα
β
γ

After

N a

� If the rule applied is N ! !, where ! hasm symbols, thenm symbols are popped

off the stack, and a symbol representing N is pushed.� It’s important to remember that a canonical parse can perform reductions only

at the top-of-stack.
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Rightmost derivation in reverse – slow motion

Stack Input Activity
a b b d d c $ Shift

a b b d d c $ Shift
a b b d d c $ Shift
a b b d d c $ Shift
a b b d d c $ Reduce B ! d

a b b B d c $ Reduce B ! bB
a b B d c $ Reduce B ! bB
a B d c $ Reduce C ! �
a B C d c $ Shift
a B C d c $ Reduce A! aBCd
A c $ Shift
A c $ Reduce C ! c
A C $ Shift
A C $ Reduce S ! AC$

S Accept

This is LR-style parsing: a scan from the left that produces a rightmost derivation.

We could have tried to apply C ! � at any point during the parse, but most would
not have made progress toward an accept. Where parse table construction is
successful, the table directs the parse towards an accept if one is possible.
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LR table construction

Each state of the parser represents pars-
ing possibilities after processing a given
prefix of the input string.

To construct the canonical LR(0) set of
states:

1. Each state begins with a kernel that
represents progress through certain
rules of the grammar:

(3) X ! y � z
W ! x z y � A
F ! a B C y �

The dot (�) shows the progress
through the rule achieved by mov-
ing into this state.

2. When � is next to a nonterminal, we
must add into this state the closure

by expanding all rules of the nonter-
minal:

(3) A ! � b c d
A ! � z A

We then label each component of the
state with an action, indicating transfer
to some other state, reduction by a rule,
or accept:

(3) X ! y � z Goto
State 17

W ! x z y � A Goto
State 5

F ! a B C y � Reduce
by rule 5

A ! � b c d Goto
State 2

A ! � z A Goto
State 17

which may create a new state:

(17) X ! y z � Reduce
by rule 10

A ! z � A Goto
State 1

A ! � b c d Goto
State 2

A ! � z A Goto
State 18
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Table construction

(1) S ! � A C $ Goto
State 2

A ! � a B C d Goto
State 3j � B Q Goto
State 4j � Reduce

by rule 6

B ! � b B Goto
State 5j � d Goto
State 6

(2) S ! A � C $ Goto
State 7

C ! � c Goto
State 8j � Reduce

by rule 3

(3) A ! a � B C d Goto
State 9

B ! � b B Goto
State 5j � d Goto
State 6

(4) A ! B � Q Goto
State 10

Q ! � q Goto
State 11

(5) B ! b � B Goto
State 12

B ! � b B Goto
State 5j � d Goto
State 6

(6) B ! d � Reduce
by rule 8

(7) S ! A C � $ Goto
State 13

(8) C ! c � Reduce
by rule 2

(9) A ! a B � C d Goto
State 14

C ! � c Goto
State 8j � Reduce

by rule 3

(10) A ! B Q � Reduce
by rule 5

(11) Q ! q � Reduce
by rule 9

(12) B ! b B � Reduce
by rule 7

(13) S ! A C $ � � �^
(14) A ! a B C � d Goto

State 15

(15) A ! a B C d � Reduce
by rule 4
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Conflict resolution

1 S ! A C $
2 C ! c
3 j �
4 A ! a B C d
5 j B Q
6 j �
7 B ! b B
8 j d
9 Q ! q

First FollowS f a; b; d; c; $g f gA f a; b; d; � g f c; $ gB f b; d g f c; d; q gC f c; � g f d; $ gQ f q g f c; $ g
Within a state, how do we resolve
whether to shift or reduce when either
action seems appropriate?

(1) S ! � A C $ Goto
State 2

A ! � a B C d Goto
State 3j � B Q Goto
State 4j � Reduce

by rule 6

B ! � b B Goto
State 5j � d Goto
State 6

Examining the Follow information shows
that only those input symbols in f c; $ g

can followanA. In state (1)we therefore
Reduce
by rule 6 only when “c” or “$” appears
next in the input. Since these symbols
are disjoint from the input symbols that
cause shifts into other states (f a; b; d g),
we can resolve the apparent conflict.

In general, a state might have an apparent shift/reduce or reduce/reduce conflict.
The more expensive table construction methods generally provide better conflict
resolution.
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Table for our example

State a b c d q $ A B C Q

1 Goto
State 3 Goto

State 5 Reduce
by rule 6 Goto

State 6 Reduce
by rule 6 Goto

State 2 Goto
State 4

2 Goto
State 8 Reduce

by rule 3 Reduce
by rule 3 Goto

State 7
3 Goto

State 5 Goto
State 6 Goto

State 9
4 Goto

State 11 Goto
State 10

5 Goto
State 5 Goto

State 6 Goto
State 12

6 Reduce
by rule 8 � � � � � � � � � � � � � � � � � � � � � � Reduce

by rule 8

7 Goto
State 13

8 Reduce
by rule 2 � � � � � � � � � � � � � � � � � � � � � � Reduce

by rule 2

9 Goto
State 8 Reduce

by rule 3 Reduce
by rule 3 Goto

State 14

10 Reduce
by rule 5 � � � � � � � � � � � � � � � � � � � � � � Reduce

by rule 5

11 Reduce
by rule 9 � � � � � � � � � � � � � � � � � � � � � � Reduce

by rule 9

12 Reduce
by rule 7 � � � � � � � � � � � � � � � � � � � � � � Reduce

by rule 7

13 � �^ � � � � � � � � � � � � � � � � � � � � � � � �^
14 Goto

State 15
15 Reduce

by rule 4 � � � � � � � � � � � � � � � � � � � � � � Reduce
by rule 4
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Using the table

State a b c d q $ A B C Q

1 3 5 6 6 6 2 4

2 8 3 3 7
3 5 6 9
4 11 10
5 5 6 12

6 8 � � � � � � � � � � � � � � 8
7 13

8 2 � � � � � � � � � � � � � � 2

9 8 3 3 14

10 5 � � � � � � � � � � � � � � 5

11 9 � � � � � � � � � � � � � � 9

12 7 � � � � � � � � � � � � � � 7

13

� �^ � � � � � � � � � � � � � � � �^
14 15

15 4 � � � � � � � � � � � � � � 4

1
a b b d d c $.a

.
1

a
3

b b d d c $.b

.

1
a
3

b
5

b d d c $

1
a
3

b
5

b d d c $.b

.

1
a
3

b
5

b
5

d d c $.d

.

1
a
3

b
5

b
5

d
6

d c $

d B

1
a
3

b
5

b
5

B d c $.B

.
1

a
3

b
5

b
5

B
12

d c $

b B B

1
a
3

b
5

B d c $.B

.
1

a
3

b
5

B
12

d c $

b B B

1
a
3

B d c $
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Using the table (cont’d)

State a b c d q $ A B C Q

1 3 5 6 6 6 2 4

2 8 3 3 7
3 5 6 9
4 11 10
5 5 6 12

6 8 � � � � � � � � � � � � � � 8
7 13

8 2 � � � � � � � � � � � � � � 2

9 8 3 3 14

10 5 � � � � � � � � � � � � � � 5

11 9 � � � � � � � � � � � � � � 9

12 7 � � � � � � � � � � � � � � 7

13

� �^ � � � � � � � � � � � � � � � �^
14 15

15 4 � � � � � � � � � � � � � � 4

1
a
3

B d c $.B

.
1

a
3

B
9

d c $� C

1
a
3

B
9

C
14

d c $

1
a
3

B
9

C
14

d c $.d

.

1
a
3

B
9

C
14

d
15

c $

a B C d A

1
A c $.A

.

1
A
2

c $.c

.
1

A
2

c
8

$

c C

1
A
2

C $.C

.
1

A
2

C
7

$.$

.
1

A
2

C
7

$
13

� �^ � �^
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Set of items construction for our expression grammar

1 S ! E $
2 E ! E + T
3 j T
4 T ! T � F
5 j F
6 F ! ( E )
7 j a

(1) S ! � E $ Goto
State 2

E ! � E + T Goto
State 2j � T Goto
State 3

T ! � T � F Goto
State 3j � F Goto
State 4

F ! � ( E ) Goto
State 5j � a Goto
State 6

(2) S ! E � $ Goto
State 7

E ! E � + T Goto
State 8

First FollowS f (; a g f gE f (; a g f+; ); $gT f (; a g f �;+; ); $gF f (; a g f �;+; ); $g

(3) E ! T � Reduce
by rule 3

T ! T � � F Goto
State 9

The above shift/reduce conflict is re-
solved by noting that � 62 Follow(E).

(4) T ! F � Reduce
by rule 5

(5) F ! ( � E ) Goto
State 10

E ! � E + T Goto
State 10j � T Goto
State 3

T ! � T � F Goto
State 3j � F Goto
State 4

F ! � ( E ) Goto
State 5j � a Goto
State 6

(6) F ! a � Reduce
by rule 7
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Set of items construction for our expression grammar

1 S ! E $
2 E ! E + T
3 j T
4 T ! T � F
5 j F
6 F ! ( E )
7 j a

(7) S ! E $ � � �^
(8) E ! E + � T Goto

State 11
T ! � T � F Goto

State 11j � F Goto
State 4

F ! � ( E ) Goto
State 5j � a Goto
State 6

(9) T ! T � � F Goto
State 12

F ! � ( E ) Goto
State 5j � a Goto
State 6

First FollowS f (; a g f gE f (; a g f+; ); $gT f (; a g f �;+; ); $gF f (; a g f �;+; ); $g

(10) E ! E � + T Goto
State 8

F ! ( E � ) Goto
State 13

(11) E ! E + T � Reduce
by rule 2

T ! T � � F Goto
State 9

The above shift/reduce conflict is re-
solved by noting that � 62 Follow(E).

(12) T ! T � F � Reduce
by rule 4

(13) F ! ( E ) � Reduce
by rule 6
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The resulting parse table

State a + � ( ) $ E T F
1 Goto

State 6 Goto
State 5 Goto

State 2 Goto
State 3 Goto

State 4
2 Goto

State 8 Goto
State 7

3 Reduce
by rule 3 Goto

State 9 Reduce
by rule 3 Reduce

by rule 3

4 Reduce
by rule 5 � � � � � � � � � � � � � � � � � � � Reduce

by rule 5

5 Goto
State 6 Goto

State 5 Goto
State 10 Goto

State 3 Goto
State 4

6 Reduce
by rule 7 � � � � � � � � � � � � � � � � � � � Reduce

by rule 7

7 � �^ � � � � � � � � � � � � � � � � � � � � �^

8 Goto
State 6 Goto

State 5 Goto
State 11 Goto

State 4
9 Goto

State 6 Goto
State 5 Goto

State 12
10 Goto

State 8 Goto
State 13

11 Reduce
by rule 2 Goto

State 9 Reduce
by rule 2 Reduce

by rule 2

12 Reduce
by rule 4 � � � � � � � � � � � � � � � � � � � Reduce

by rule 4

13 Reduce
by rule 6 � � � � � � � � � � � � � � � � � � � Reduce

by rule 6
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Using the table

State a + � ( ) $ E T F
1 6 5 2 3 4
2 8 7

3 3 9 3 3

4 5 � � � � � � � � � � � 5
5 6 5 10 3 4

6 7 � � � � � � � � � � � 7

7

� �^ � � � � � � � � � � � � �^
8 6 5 11 4
9 6 5 12
10 8 13

11 2 9 2 2

12 4 � � � � � � � � � � � 4

13 6 � � � � � � � � � � � 6

1
a + a � ( a + a) $.a

.
1

a
6

+ a � ( a + a) $

a F.

1
F
4

+ a � ( a + a) $

1
F
4

+ a � ( a + a) $

F T.

1
T
3

+ a � ( a + a) $

T E.

1
E
2

+ a � ( a + a) $.+

.
1

E
2

+
8

a � ( a + a) $.a

.
1

E
2

+
8

a
6

� ( a + a) $

a F.
1

E
2

+
8

F
4

� ( a + a) $

F T.
1

E
2

+
8

T
11

� ( a + a) $.�.
1

E
2

+
8

T
11

�
9

( a + a) $
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Using the table

State a + � ( ) $ E T F
1 6 5 2 3 4
2 8 7

3 3 9 3 3

4 5 � � � � � � � � � � � 5
5 6 5 10 3 4

6 7 � � � � � � � � � � � 7

7

� �^ � � � � � � � � � � � � �^
8 6 5 11 4
9 6 5 12
10 8 13

11 2 9 2 2

12 4 � � � � � � � � � � � 4

13 6 � � � � � � � � � � � 6

1
E
2

+
8

T
11

�
9

( a + a) $.(

.
1

E
2

+
8

T
11

�
9

(
5

a + a) $.a

.
1

E
2

+
8

T
11

�

9
(
5

a
6

+ a) $

1
E
2

+
8

T
11

�

9
(
5

a
6

+ a) $

a F.

1
E
2

+
8

T
11

�

9
(
5

F
4

+ a) $

F T.

1
E
2

+
8

T
11

�

9
(
5

T
3

+ a) $

T E.

1
E
2

+
8

T
11

�
9

(
5

E
10

+ a) $.+

.

1
E
2

+
8

T
11

�
9

(
5

E
10

+
8

a) $.a

.
1

E
2

+
8

T
11

�
9

(
5

E
10

+
8

a
6

) $

A F.
1

E
2

+
8

T
11

�
9

(
5

E
10

+
8

F
4

) $

F T.
1

E
2

+
8

T
11

�
9

(
5

E
10

+
8

T
11

) $
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Using the table

State a + � ( ) $ E T F
1 6 5 2 3 4
2 8 7

3 3 9 3 3

4 5 � � � � � � � � � � � 5
5 6 5 10 3 4

6 7 � � � � � � � � � � � 7

7

� �^ � � � � � � � � � � � � �^
8 6 5 11 4
9 6 5 12
10 8 13

11 2 9 2 2

12 4 � � � � � � � � � � � 4

13 6 � � � � � � � � � � � 6

1
E
2

+
8

T
11

�
9

(
5

E
10

+
8

T
11

) $

E + T E.
1

E
2

+
8

T
11

�
9

(
5

E
10

) $.)

.
1

E
2

+
8

T
11

�

9
(
5

E
10

)
13

$

1
E
2

+
8

T
11

�

9
(
5

E
10

)
13

$

( E ) F.

1
E
2

+
8

T
11

�

9
F
12

$

T � F T.

1
E
2

+
8

T
11

$

E + T E.

1
E
2

$.$

.

1
E
2

$
7

� �^ � �^

E

TE

a a ( a

F

E

E T

T F

F

+*+

T

a )

F

T

F
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Summary of LR table construction methods

LR(0): If the table contains no conflicts,
then the grammar is unambiguous
and each state clearly indicates
precise shifts and reduces.

SLR(k): Where conflicts exist,
this method analyzes the grammar
to obtain sets of at the k symbols that
can follow each nonterminal. For an
item containing

(1) A ! B C �
D ! C � F
G ! C �

if the k symbols that can follow A are
disjoint from each of the strings of k
symbols derivable from F, then the
shift/reduce conflict is resolved. If
the k symbols that can follow A are
different from those that can follow
G, then the reduce/reduce conflict
is resolved.

LR(k): While the SLR method analyzes
the grammar for follow information,
the LR(k) method begins with amore
elaborate set of items that already
incorporates follow information. For
example, given

(3) A ! f � E g

(4) B ! ( � E )

the SLR method would assume that
“g” or “)” could follow an E in any
context. The LR(k) method carries
into each state the relevant follow
set. Thus, the table constructed by
LR can have many more states than
the table constructed by SLR.

LALR(k): is a compromise between SLR
and LR. The table is the same size as
SLR, but conflict resolution is sharper.

The methods described above are successful only for unambiguous grammars.
Earley’s algorithm [1, 16] can construct parses (and derivations) for ambiguous
grammars. Note that LR parsing is more powerful that LL parsing.
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What happens when LR(k) constructions fail?

If table construction reveals an inadequate state, one of the following must hold:

The grammar is ambiguous.

If the language is not itself inherently
ambiguous, then perhaps the grammar
can be modified to generate the same
language, but unambiguously.

This is a task for human intelligence, as
it’s provably undecidable (i.e., there is
no mechanical process to decide) that
a grammar is ambiguous.

A method that works well is to identify
the inadequate states, and then work
into and out of the state to generate a
string that has more than one derivation.
The conflicts (identified, for example, by
YACC) are helpful in this process.

Underfueled table construction

1. Generally, SLR is more powerful than
LR(0); LALR ismore powerful than SLR;
LR is the most powerful (canonical)
bottom-up parsing method.

2. Canonical LR parsers must form their
reductions on top-of-stack. For
some grammars (an example fol-
lows), no bounded amount of looka-
head (bounded at table construc-
tion time) suffices to disambiguate
some state.

A good exercise is to attempt adding
nested procedures into theANSI C gram-
mar. foo(,,,: : : ,) f becomes prob-
lematic: One can’t tell whether foo is a
procedure definition or invocation until
the arbitrarily distant opening brace is
seen.
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Identifying the cause of ambiguity

E ! E + Ej a

YACC finds a shift/reduce conflict in the following state:

(4) E ! E � + E Goto
State 3

E ! E + E � Reduce
by rule 1

Lining up the “dots” shows we can reach this state with the prefix : : :E + E, and one
rule shows how to continue this string to : : : E + E + E: : : . We can now easily construct
two parses: one assumes state 4 shifts (bottom), one assumes state 4 reduces (top).

a + a + a

E

E E

E

E

E E E

E

E
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A grammar that is not LR(k) for any k

S ! A aj B b
A ! A dj d
B ! B dj d

In the abovegrammar, a reductionmust
occur for the first “d” in the input, but
the lookahead necessary for deciding
whether to reduce A! d or B! d could
be arbitrarily large.

If the right-hand sides of the first rules
for A and B were reversed, then the
grammar is LR(1), but the stack grows
arbitrarily large at parse time.

S

d

d

d

d

?

?

?

?

a ? b

Often the grammar can be modified to become LR(k), since this problem usually
pertains to how the language is structured by the grammar.
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Syntax + Semantics = Language

While thegrammar for a languageenforces syntactic constraints onaccepted strings,
some language issues are often postponed until after parsing.

For example, some language definitions contain rules that cannot be enforced by
any context-free mechanism.

The most common examples involve
some form of type-checking. Recall
our expression grammar, a form of
which appears in most programming
language grammars. While the gram-
mar allows an expression such asa + b
most languages contain rules that re-
strict the types of a and b. For example,
addition does not make sense if a is a
character string and b is an array.

A grammar that accommodates type
information would involve some con-

text, and such grammars are difficult to
design and expensive to process. Vi-
able approaches to this problem involve
some form of semantic processing, per-
formed during or shortly after parsing:

Attribute grammars
specify equations whose resolution
essentially performs type checking.

Symbol tables are the most common
solution. Type information is entered
when identifiers are declared, so
that expression types can be subse-
quently checked.

There is still the issue of whether type checking occurs in the same pass over the input
as syntactic checking. Some languages forbid the kinds of “forward” declarations
that would require extra passes for type checking.
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Semantic processing

Also, there are often language constraints that are difficult or unwieldy to enforce
syntactically.

For example, theANSI C grammar essen-
tially has a set of rules:

Declaration ! Qualifiers id
Qualifiers ! Qualifiers Qualifierj Qualifier
Qualifier ! intj floatj staticj externj ...

While this grammar allows strings like

static int x

the grammar also admits strings such as

static int extern float x

The language actually offers three kinds
of typequalifiers. Atmost one fromeach
category is allowed for any identifier.

The grammar could be transformed to enforce the kind and number of qualifiers that

are allowed, but this would increase the size of the grammar.

Another example would be the evaluation of an expression. If we restricted the

size of its terms, each expression could be syntactically evaluated by a huge

grammar. Taken further, any programming language can be processed by a finite-

state machine if the program size is bounded.

Ultimately, issues of taste and efficiently dictate how and where language issues are
addressed.
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Ordering from a Chinese menu

Beef

Quail

Chicken

Fish

Lamb

Potato

Spinach

Corn

Peas

Cheesecake

Ice Cream

Pudding

The rules for a “correctly” placed order
are:

1. At most one item may be selected
from any column.

2. Some columns may be skipped.

3. At least one item must be chosen.

4. The items can be arbitrarily ordered.

Order ! Choices
Choices ! Choice Choicesj Choice
Choice ! ColAj ColBj ColC
ColA ! BEEFj CHICKENj QUAILj FISHj LAMB
ColB ! POTATOj SPINACHj CORNj PEAS
ColC ! CHEESECAKEj PUDDINGj ICECREAM

The assignment is to rewrite the grammar to enforce the rules. This is exactly what’s
needed to enforce C’s rules for declarations.

Copyright c
1994 Ron K. Cytron. All rights reserved – 79 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Solution

Order ! Choices
Choices ! ColAj ColBj ColCj ColA ColBj ColB ColAj ColA ColCj ColC ColAj ColB ColCj ColC ColBj ColA ColB ColCj ColA ColC ColBj ColB ColA ColCj ColB ColC ColAj ColC ColA ColBj ColC ColB ColA

ColA ! BEEFj CHICKENj QUAILj FISHj LAMB
ColB ! POTATOj SPINACHj CORNj PEAS
ColC ! CHEESECAKEj ICECREAMj PUDDING

While some factoring of this grammar is possible, this example illustrates the tradeoff
between grammar size and specificity of the parse.

Copyright c
1994 Ron K. Cytron. All rights reserved – 80 – SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Symbol tables

The symbol table tracks symbols and
their types, where type information
could be any property of a symbol rele-
vant to subsequent activity in the com-
piler.

static char *a[5];

is an array of 5 pointers to characters.

Such information typically includes� the basic type of a variable (ptr, int,
char, float, struct, etc.);� structure layout, pointer specifics,
array information;� initialization values;� scope information.

I provide the following symbol table access functions:

IncrNestLevel(): increase the nest level by one.

DecrNestLevel(): decrease the nest level by one.

EnterSymbol(M,name): enters the string name as a symbol of type M at the current

nest level.

RetrieveSymbol(name): returns a pointer to thecurrently active declaration of name.
If name is not active, an error message is produced and the parse is aborted.

ExistsSymbol(name): operates like RetrieveSymbol(), but instead of aborting, a NULL

pointer is returned if name isn’t active.

I provide extra credit for those who implement their own, hash-based symbol table
manager.
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Symbol tables

Essential information

1. Names;

2. Scope information;

3. Type information;

4. Storage specifics.

Issues

1. Programs typically contain a mix of
very longand very short names (i vs.

WindowMaxAccelScreenMouse()).

2. Type checking and code genera-
tion do not require access to all
scopes at all times. Typically, ac-
cess is required only to the current
scope and its outer scopes. Even
then, programs use the current and
outermost scopes most frequently.

There are two popular methods of establishing symbol tables:

1. Make a separate pass over the program to create the symbol table;

2. Build the symbol table as you parse.

Given that one typically creates an abstract syntax tree anyway, it seems wise to
defer symbol table creation to a separate pass. On the other hand, restructuring the
grammar to simplify symbol table creation is a good exercise, and it is necessary for
a one-pass compiler.
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Symbol table organization

Each cell
Same Actual Same Same
hash symbol ID scope
(H) info (V) (L)

scope

x

y

z

x

y

hash

x

The above scheme implements a stack for each variable v, where top-of-stack is the

currently active instance of v. Let f (v) be the hash index for variable v:
Entering a scope: each variable v is pushed onto the stack headed by its (chained)

hash index f (v).
Leaving a scope k: each variable linked from scope k is popped off its stack.

Lookup: use f (v), with chaining via H , to locate the named variable.
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Semantic processing at parse time

Recall how an LR parser uses a stack to
apply reductions:

1
E
2

+
8

T
11

$

E + T E.
1

E
2

$

Our parse stack previously consisted ofan , where a is a grammar symbol andn is a parse state. We now augment the
stack to contain semantic information:ans

We can use this semantic stack to syn-

thesize information during the parse. In
our example, when E+T is reduced, we
could add together the values associ-
ated with E and T, pushing the sum on
the stack along with the E replacing the
E+T:

1? E
2
47

+
8

T
11
21

$

E + T E.
1? E

2
68

$

In YACC, the grammar file can specify a union of types for the semantic stack, so that
information of any form can be synthesized during the parse.
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Synthesized attributes

With YACC, a segment of C code can
be associated with each production.
Given a rule

A ! a1 a2: : : ak
the segment of C code can refer to
the semantic stack values of symbols as
follows:

Rule Symbol Semantic Valuea1 $1a2 $2
...ak $kA $$

so that a typical rule looks like

A ! a1 a2: : : akf$$ = $3 + f($2);g
B C da

A

B

E

F
G

When “a B C d” is reduced to A, infor-
mation previously contributed to B and
C can be incorporated into the infor-
mation synthesized for A. Without global
storage, information computed at a tree
node X is a pure function of information
computed at X ’s descendents.

More generally, one can reference any value still on the stack. In our example,this
include information associated with F and G. Such grammars are called L-attributed.
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Evaluating infix expressions

S ! E $fprintf("Answer is %dnn",$1);g
E ! E + Tf$$ = $1 + $3;gj Tf$$ = $1;g
T ! T � Ff$$ = $1 � $3;gj Ff$$ = $1;g
F ! ( E )f$$ = $2;gj constf$$ = $1;g

E

TE

a a ( a

F

E

E T

T F

F

+*+

T

a )

F

T

F

5 + 6 � ( 7 + 8 )

Notice how the unit productions (A ! B) lead to simple copying of values up the
parse tree. While these rules participate in disambiguating the grammar, they are
not always conducive to semantic processing.
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Another example

Num ! D $fprintf("Answer: %dnn",$1);g
D ! D df$$ = (10� $1) + $2;gj df$$ = $1;g

Applied to the string “347$”

1
3 4 7 $.d

.
1

d
3
3

4 7 $

d D

1
D
2
3

4 7 $.d

.
1

D
2
3

d
5
4

7 $

State d $ D
1 Goto

State 3 Goto
State 2

2
Goto
State 5

Goto
State 4

3 Reduce
by rule 1 � Reduce

by rule 1

4

� �^ � � �^

5 Reduce
by rule 2 � Reduce

by rule 2
Note: grammar is LR(0)

1
D
2
3

d
5
4

7 $

D d D

1
D
2
34

7 $.d

.
1

D
2
34

d
5
7

$

D d D

1
D
2

347

$.$

.
1

D
2

347

$
4

� �^� �^
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Grammars and semantic processing

There are usually many unambiguous grammars that generate a given programming
language. In planning for semantic processing, it is often convenient to rewrite the
grammar so that reductions and stack activity are conducive to the required actions.

Consider the grammar:

Num ! x Dj D
D ! D dj d

Interpretation: a string of digits rep-
resents a base-10 number, unless the
string is preceded by an ‘x’, in which
case the string represents a base-8
number.

String Number
3 4 7 347
x 3 4 7 231

Num

x

d

d

d

D

D

D

We could compute the number by passing the list of digits up the tree, forming the
answer at Num. We would prefer to compute the number as we reduce the digits,
but this grammar’s parse trees have the base information in the wrong place.
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Rewriting the grammar

Num ! x OctD $fprintf("Answer: %dnn",$2)gj DecD $fprintf("Answer: %dnn",$1)g
DecD ! DecD df$$ = (10� $1) + $2;gj df$$ = $1;g
OctD ! OctD df$$ = (8� $1) + $2;gj df$$ = $1;g

State d x $ DecD OctD
1 Goto

State 4 Goto
State 2

2
Goto
State 6

Goto
State 5

3 Goto
State 8 Goto

State 7

4
Reduce
by rule 4 � � � � � � � Reduce

by rule 4

5 Goto
State 10 Goto

State 9

6 Reduce
by rule 6 � � � � � � � Reduce

by rule 6

7

� �^ � � � � � � � � �^

8 Reduce
by rule 3 � � � � � � � Reduce

by rule 3

9

� �^ � � � � � � � � �^

10 Reduce
by rule 5 � � � � � � � Reduce

by rule 5
Note: grammar is LR(0)

x

d

d

d

OctD

OctD

OctD

Num

$

Num

$

d

d

d

DecD

DecD

DecD
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Another change!

Suppose we want the base itself to be
part of the input:

String Number
3 4 7 347

x 8 3 4 7 231
x 9 3 4 7 286

One possibility is to use a global vari-
able:

Num ! x B D $fprintf("Answer: %dnn",$3);gj Skip D $fprintf("Answer: %dnn",$2);g
B ! dfBase = $1;g
Skip ! �fBase = 10;g
D ! D df$$ = (Base� $1) + $2;gj df$$ = $1;g

Num

$

d

d

d

x B

d

D

D

D

Note that the reduction B ! d is neces-
sary to set the global variable. In the
LR parse, this is the first reduction, so
the base will indeed be set when the
first D ! D d rule is applied. But global
variables are not very clean, especially
if constructs could be nested so that
global variables get overwritten.
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Arriving at a good grammar

Let’s engineer the tree we would like to
see, and then construct the appropriate
grammar. In the tree shown to the right,
it’s possible to synthesize the baseup the
tree.

At each reduction, we could know how
to compute the new value to pass up
the tree.

Num

d

d

D

D

D

B

Num ! D $fprintf("Answer: %dnn",$1.value);g
D ! D df$$.value = ($1.base� $1.value) + $2;

$$.base = $1.base;gj Bf$$.base = $1;g
B ! x df$$ = $2;gj �f$$ = 10;g
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Back to declarations

The running example of converting a string of digits to a number is actually an
abstraction of processing variable declarations in C.

Num

$

d

d

d

x B

d

D

D

D

B D

D

D

int

w

x

y

Decls

Wewould like to enter the variables in the symbol table, along with their types, as we

parse the input. Rewriting the ANSI C grammar to accomplish this is a good exercise.

Note that PASCAL has its type information at the end, and so a right recursive rule can
similarly accommodate that form of syntax.
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Back to symbol tables

An attributed grammar allows semantic equations whose terms depend on synthe-
sized and inherited attributes. A classical use of attribute grammar systems is for the
synthesis and use of type information.

As the declarations are parsed, a “sym-
bol table” is synthesized up the parse
tree. While processing the code of a
procedure, this symbol and those from
outer scopes are available as an inher-
ited attribute.

int a;
float b; a+b+c

While attribute grammars offer a clean mechanism for expressing semantics, such
systems are usually slower than those involving only synthesized attributes, and one
must still get the equations “right”. The Cornell Program Synthesizer is a popular and
robust system for developing compilers based on attribute grammars [41, 31, 32].
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Abstract syntax trees (ASTs)

E

TE

a a ( a

F

E

E T

T F

F

+*+

T

a )

F

T

F

a

+

aaa

*

+

The AST eliminates the scaffolding introduced to render the grammar unambiguous.
Items such as temporary variables can be introduced into the AST to simplify
subsequent activity (optimization, code generation).
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Creating an AST

We can easily add actions to the grammar to create AST nodes and properly link
these nodes to form the AST.

S ! E $
E ! E + Tf$$ = MakeBinTree(PLUS,$1,$3);gj Tf$$ = $1;g
T ! T � Ff$$ = MakeBinTree(TIMES,$1,$3);gj Ff$$ = $1;g
F ! ( E )f$$ = $2;gj constf$$ = MakeConst($1);gj idf$$ = MakeSymb($1);g

Free of clutter, the resulting tree can then be traversed to instantiate symbol tables,
perform type checking, optimize the program, and generate code.
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AST routines

typedef struct _TreeNode {
struct {

int linenumber;
int colnumber;

} sourceinfo;
NodeInfo info;
struct _TreeNode *child;
struct _TreeNode *sibling;
struct _TreeNode *head;
struct _TreeNode *parent;
struct _TreeNode *leftsib;

} TreeNode;

NodeInfo is a union of tree node infor-
mation: symbol table pointers, integer
values, operator types, etc.

MakeFamily(parent; sibs):
adopts sibs into the parent’s family,
returning the parent.MakeSiblings(c1; c2): units siblings c1
and c2, returning the end of the re-
sulting list (shown below).MakeOperatorNode(opnum): creates an
operator node, where opnum is the
“name” of a “token”.MakeIntegerNode(intval): creates an in-
teger node with value intval.MakeStringNode(str): creates a string
node with value str.MakeSymbolNode(sym): creates a sym-
bol reference node to sym.

c1

c2

MakeSiblings(c1,c2)
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Using the AST routines

Num ! D $f$$ = $1 ! head;g
D ! D df$$ = MakeSiblings($1,

MakeIntegerNode($2));gj Bf$$ = MakeIntegerNode($1);g
B ! x df$$ = $2;gj �f$$ = 10;g

3 4 78

The above list is created by the actions
shown to the left. The first number in
the list is the base, and the subsequent
numbers are the digits as parsed from
left to right.
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Example AST
int a1;
extern int a2;

int factorial(X)
int X;
{
int Y;

Y = X;
if (Y > 0) [ Y*factorial(X-1); ];

else [1;];
}

void main() {
int i;
a1 = factorial(i=5);
a2 = factorial(3);

}

The AST is shown to the right, with indentation reflecting
tree depth.
Note the regular structure:� functions and inline procedures are represented

similarly.� an if-then structure is represented as an if-then-
else with trivial “else” code.

Operator PROGRAM
Operator FORMALS
Operator SDCLS

Ref Symbol001(02) int *0 [0] auto : a1
Ref Symbol002(02) int *0 [0] extern : a2

Operator FDCLS
Ref Symbol003(02) int *0 () [0] auto : factorial

Operator FORMALS
Ref Symbol004(03) int *0 [0] auto : X

Operator SDCLS
Ref Symbol005(04) int *0 [0] auto : Y

Operator FDCLS
Operator EXPRBLOCK

Operator OTHEREXPRS
Operator ASSIGN

Ref Symbol005(04) int *0 [0] auto : Y
Ref Symbol004(03) int *0 [0] auto : X

Operator LASTEXPR
Operator IF

Operator GT_OP
Ref Symbol005(04) int *0 [0] auto : Y
Integer 0

Operator INLINEPROC
Operator FORMALS
Operator SDCLS
Operator FDCLS
Operator EXPRBLOCK

Operator OTHEREXPRS
Operator LASTEXPR

Operator TIMES
Ref Symbol005(04) int *0 [0] auto : Y
Operator INVOKE

Ref Symbol003(02) int *0 () [0] auto : factorial
Operator ARGS

Operator MINUS
Ref Symbol004(03) int *0 [0] auto : X
Integer 1

Operator INLINEPROC
Operator FORMALS
Operator SDCLS
Operator FDCLS
Operator EXPRBLOCK

Operator OTHEREXPRS
Operator LASTEXPR

Integer 1
Ref Symbol006(02) void *0 () [0] auto : main

Operator FORMALS
Operator SDCLS

Ref Symbol007(04) int *0 [0] auto : i
Operator FDCLS
Operator EXPRBLOCK

Operator OTHEREXPRS
Operator ASSIGN

Ref Symbol001(02) int *0 [0] auto : a1
Operator INVOKE
Ref Symbol003(02) int *0 () [0] auto : factorial
Operator ARGS

Operator ASSIGN
Ref Symbol007(04) int *0 [0] auto : i
Integer 5

Operator LASTEXPR
Operator ASSIGN

Ref Symbol002(02) int *0 [0] extern : a2
Operator INVOKE
Ref Symbol003(02) int *0 () [0] auto : factorial
Operator ARGS

Integer 3
Operator EXPRBLOCK

Operator OTHEREXPRS
Operator LASTEXPR
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Type checking

L vs. R values

=

X +

Y *

&

W

*

Z

The actual meaning of the identifier is
dependent on its context.

Type compatibility

=

X +

Y Z

The meaning of + in the above program
depends on the types of Y, Z, and X.
In languages that allow operator over-
loading, even the meaning of + be-
comes suspect.

Notice the dual role of the operator � (in the C language), which is nicely disam-
biguated using the proper grammar.
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Left and right values of identifiers

Named for their interpretation with respect to “=”, the left value of an identifier is its
location while the right value is the contents of the identifier.

L vs. R values

=

X +

Y *

&

W

*

Z

The positioning of identifiers with respect
to various operators in C indicates which
value is desired:

X= The storage location of X
=Y The value stored at Y� Z The value at Z,

treated as a storage location
& W The address of W,

treated as a value
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C left and right values

Form Expects Produces
a=b LV(a), RV(b) RV� c RV(c) LV
&d LV(d) RV

S ! L = Rj R
L ! idj � R
R ! Lj & Lj int

This grammarproduces structures where
the interpretation of left and right values
is clear.

Moreover, the rule R!L is applied when
a left value “becomes” a right value
through dereferencing.

The grammar correctly precludes strings
like “3=x” and “&z=y”.

Table construction for this grammar fails for SLR because “=” can follow an R.

But there’s no sentential form that begins “R=”; the R must be preceded by an � as
in “�R=”. The LR(1) construction can create a suitable parse table. The grammar is
also LALR(1) (YACC can handle this grammar).
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Examples

x=y

S

L = R

x L

y
Push x
Push y
Fetch
Store

�3=&y
S

L = R

& y* 3
Push 3
Push y
Store

The � and & have no effect on code generation: they merely change the type of an
expression. The language design is biased towards the most prevalent “x=y” form.
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Examples�x=y
S

L = R

* R

L

x

y

L

Push x
Fetch
Push y
Fetch
Store

�x=�y
S

L = R

* R

L

x

L

* R

L

y

Push x
Fetch
Push y
Fetch
Fetch
Store
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More on left and right values

Unfortunately, the syntactic rules for C do not allow a grammar-based approach to
left and right value disambiguation. However, the rules related to =, &, and � can
be applied just as easily to the parse tree, using attribute grammars or an additional
(bottom-up) pass over the tree.

SetV(node; kind): asserts the left or right
valuedness of node.

ExpectLV(node): expects that node is a
left value.

ExpectRV(node): expects that node is a
right value.

Convert(node; how): attempts to convertnode into a left or right value.

As our grammar indicates, the only con-
version that makes sense is a left to right
value conversion, which is basically a
dereference. In a call-by-reference
language, however, a right value could
become a left value by introducing a
temporary. Show below are the parse
trees before and after the extra bottom-
up pass.

S

=

*

*

y

x

Form Expects Produces

a=b LV(a), RV(b) RV� c RV(c) LV

&d LV(d) RV

Use

Use

Use

S

=

*

*

y

x
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Data types and compatible operations

The type checking phase of a compiler is traditionally responsible for establishing the
semantic well-formedness of operations and data. Where language standards allow
flexibility (some would say sloppiness) with respect to type consistency, compilers
are charged with introducing implicit or explicit conversion operations to allow
operations on otherwise unsuitable data.

Most languages offer a host of basic
types, which are usually (though not
always) supported by target instruction
sets:� integers;� floating point;� Boolean-valued f true; falseg;� character.

Most languages also allow the introduc-
tion of new types based on old ones:� tuples (records, structs);� maps (functions, arrays);� sets.

Proponents of strongly-typed languages, where data and operations must adhere
rigidly to type consistency, claim that when soundly checked at compile-time, their
programs are less likely to contain bugs.
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Type checking

As with left and right value determination, type checking can be performed as a
bottom-up pass over the parse (or abstract syntax) tree.

A straightforward (i.e., highly localized)
scheme operates as follows. At the
tree’s leaves are found the atomic ele-
ments such as constants, identifiers, and
function calls. Each of these asserts its
type, based on syntactic (“x” vs. ‘x’) or
contextual (declared) information.

At each internal node X
1. the subtrees of X are checked for

type compatibility: this depends on
the operation contained in X ;

2. conversion operations are inserted
as necessary;

3. the type of X is determined.

5.3 x foo(y)

+

A B
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Simple type checking+ int float char
int int float int
float float float float
char int float int

= int float char
int int int int
float float float float
char char char char

The arithmetic operators tend to find the grandest type suitable for performing the
operation, while the assignment operators insist that the assigned valuematches the
type of its destination.
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Name vs. structural type equivalence

typedef int t
int x
t y
...
x = (int) y

enum f a=1, b=2, c=3g foo;
...
foo = foo + 1;
M[(int) foo] = ‘x’;

The C language has cast operations, that assert the type of an expression. But

conversions can also occur in uncast expressions, which can lead to confusion.

Are the above casts necessary? It depends onwhether we regard type equivalence

as a structural property or as a property of the name used in the declaration. In the

above examples, x, y, and foo are all structurally represented as an integer.

The use of + on foo could also be problematic, if an enum data type cannot be the

target of +.
Pointers are an interesting example, since they are all structurally the same. Good

language design and programming practice suggest distinguishing between point-

ers to different types.

C castigates those who fail to cast between pointers of different types.
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Representing types [33]

The lineage of a type can be represented without reference to specific type names.
A bit-vector representation is convenient for construction and for comparison:

Each of the types extenders is assigned
a bit pattern from k bits:

Type Pattern
ptr 01

array 10
func 11

So that a pointer to typeX is represented
as

01X
Note that this scheme does not track
array index types or function parameter
types.

Wisely leaving one pattern free, we now
assign the base types:

Type Pattern
void 0000
char 0001
int 0010
float 0011

Declaration Type representation

int x 0010

int ��x[] 01 01 10 0010

char (�(�x())[])() 11 01 10 01 11 0001

The last entry is a function that returns a pointer to an array of pointers to functions
that return characters.
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Runtime storage management

Most block-structured languages require manipulation of runtime structures to main-
tain efficient access to appropriate data and machine resources. For our purposes,
a procedure is either a named function or an inline (parameterless) block.

Let’s examine the activity normally as-
sociated with invoking a procedure P :

1. Some machine state might be
saved: general registers, vector
registers, condition codes, interrupt
masks, etc.

2. Access must be established toP ’s local variables and compiler-
generated temporaries.

3. Access must be established to outer
scope variables (but not for C).

4. The caller of P must be recorded so
that P can return when done.

5. Parameters might be received prior
to executing P .

6. A return value might be prepared
prior to returning from P .

Each procedure invocation causes cre-
ation of an activation record or frame to
hold such runtime information.

State
Local x
Local y

...
Dynamic Link
Static Link
Parameters
Return Value

It’s convenient to have each local oc-
cupy a fixed amount of storage in the
frame. Therefore, arrays and other large
objects are often indirectly accessed
from a procedure’s frame, with the ac-
tual storage allocated on stack after the
frame.
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A simple runtime storage layout

Exec. Data

Stack

Heap

Code

Data

Since there are two dynamically grow-
ing areas, a simple scheme is to place
these at opposite ends of the address
space.

Following the contour of procedure en-
try and exit, activation records are
usually allocated on a stack. Where
languages allow suspension and re-
sumption of procedures (e.g., via con-

tinuations), then frames are garbage-
collected from the heap when dead.

The stack can also be used for perform-
ing intermediate computations.

The heap is generally managed by some form of explicit or implicit garbage
collection [4].
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Access to nonlocals

Static Links

current

next outer

next outer

At procedure entry, a link is inserted in
the frame to a procedure’s next outer
scope, whose frame is linked to its outer
scope, and so on. The static link is
deallocated along with the frame.

Establishing the link is fast, but access-
ing the kth enclosing scope requires k
indirections using static links. However,
a good register allocator would cache
these in the procedure’s registers.

Displays

depth 0

depth 1

current depth

A display is an array of frame pointers.
At procedure entry, the display is ad-
justed so that the frame at static depthd is accessed via entry d of the display.
The display must be reset at procedure
return.

Maintaining the display takes more time
than with static links, but access to outer
scopes is faster once the display is es-
tablished.

Most programs make almost exclusive use of local and outermost scopes, with scant
use of intermediate scopes. This is especially true in C, where the language offers no
access to intermediate scopes except by explicit pointers.
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Code Generation

As with parsing, methods for code generation can be classified:

Ad hoc.

As with semantic processing, code
could be generated after the parse by
traversing the AST. Typically, a com-
bined pre- and post-order traversal suf-
fices, where a node’s type prompts the
codegenerator to emit aparameterized
template of code.

Systematic� Grammar-based [21].� Grammars with attributes [20].� Tree pattern-matching [17, 19].� By peephole processing [11].

These methods spend more time on in-
struction selection than can be afforded
or managed by ad hoc. methods.

In a compiler course, the choice of code generation strategy is key to a successful

experience. Many courses stop just before code generation, in which case the

students do not experience the elation of watching their compilers actually work.

If the target of translation is reasonably high-level (e.g., a LISP-like intermediate

langauge), then ad hoc. methods are feasible. In this case, an interpreter should be

provided to execute the translated programs.

Otherwise, experience with an automatic code generator is more beneficial. Watch
for developments in the lcc system [18], which canbe obtained by contactingDave
Hanson (drh@princeton.edu). If the MIPS instruction set were targeted, then Larus’s
SPIM simulator [30](Appendix A) can greatly facilitate debugging the generated
code.
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Example of a high-level intermediate language

The language FRIL [10] was developed to ease code generation, primarily by
resembling LISP and by offering a declarative mechanism for storage association.
Each symbol FRIL is declared at most once as any procedure’s local or parameter.
Each “expression” declares the static depth of its frame, and provides a pointer to its
outer scope.

int a1;
extern int a2;
int one;
void main() {

int i;

int factorial(X)
int X;
{
int Y;
Y = X;
if (Y > 0) Y*factorial(X-1);
else one;

}

one = 1;
a1 = factorial(i=5);
a2 = factorial(3);

(Expression 1 /* factorial */
(PushLevel 5 (LinkExpressionID 2)
(Args (SymbolID 7) /* X */)
(Locals (SymbolID 8) /* Y */)

)
(Def (SymbolID 8) /* Y */

(Use (SymbolID 7) /* X */)
)
(-> 0

(CHOOSE
(
(NE 0

(GT (Use (SymbolID 8) /* Y */) 0)
)

(TIMES
(Use (SymbolID 8) /* Y */)
(-> 1
(MINUS
(Use (SymbolID 7) /* X */)
1

)
)

)
)
(1 (Use (SymbolID "one")))

)
)

)
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Ad hoc. methods

For example, for a binary + node, the code generator would be called recursively
to place the result of the left and right subtrees in two known locations (say, registersR1 and R2). Code would then be emitted to form the sum, placing the result in yet
another known location.

+

A B

(PLUS
/* Code for A */
/* Code for B */

)

I usually provide procedures for generating FRIL’s symbol table, for generating a

PushLevel, and for indenting and formatting the output. The students must decide

what constitutes an expression. For example, FRIL has only one control transfer

operator: the procedure call. Thus, the body of an iterative loop must be invoked

recursively to achieve iteration.

Students write some 200 lines of code to complete the ad hoc. code generator for
FRIL.
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A systematic method — Tree Rewriting

While the ad hoc. method services the AST a node at a time, tree rewriting systems
can examine larger subtrees and searching for more optimal instruction sequences.

The AST shown to the right is representa-
tive of the code fragment�(x+4)=a[k];
Note that left and right value analysis
has already taken place.

Let’s assume that from the perspective
of code generation, the nodes x, a,
and k represent constants. This would
be the case had the compiler assigned
storage to these variables. If not, then
the AST should reflect a level of indirec-
tion (probably off a popular register) to
reach those variables.

=

Use

+

a Use

k

+

Use

x

4

Given the richness of most instruction sets, trying all combinations of instructions to
cover the tree would be prohibitively expensive. Most tree matching algorithms use
dynamic programming, so that results previously holding for some subtree can be
reused without additional cost.
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Tree rewriting

Rule Rewrite Instruction Cost

1
Ri

Ri+

const Ri  Ri+const 1

2

Ri

Ri

Use

+

const Ri  M[Ri+const] 5

3

Ri

const

Use Ri  M[const] 3

Not shown are the rules that account for the symmetry of addition.
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Tree rewriting

Rule Rewrite Instruction Cost

4
Ri

+

const

Rj

Rj=

M[Ri+const] Rj 5

5
Rj

UseRi

Rj=

M[Ri] M[Rj] 6

6
Riconst Ri  const 1

7

Ri

Ri

+

Rj Ri  Ri+Rj 1
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Example – one way to cover the nodes

=

Use

+

a Use

k

+

Use

x

4

=

Use

+

a Use

k

+

Use

x

4

Rule 4

Rule 3

Rule 3

Rule 2

Rule Instr Cost

2 Ri!M[Ri+const] 5

3 Ri!M[const] 3

4 M[Ri+const]!Rj 5

Rule Cost

3 3

2 5

3 3

4 5

16
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Example – another way to cover the nodes

=

Use

+

a Use

k

+

Use

x

4

=

Use

+

a Use

k

+

Use

x

4

Rule 3

Rule 1

Rule 1

Rule 3

Rule 5

Rule Instr Cost

1 Ri!Ri+const 1

3 Ri!M[const] 3

5 M[Ri]!M[Rj] 6

Rule Cost

3 3

1 1

3 3

1 1

5 6

14
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Compiler organizations

Optimizer

Generation
Code

Semantics

Parser

Program

Front
End

Middle
End

Back
End

Executable
Text

Front end: Operator and storage ab-
stractions, alias mechanisms.

Middle end:� Dead code elimination� Code motion� Reduction in strength� Constant propagation� Common subexpression elimina-
tion� Fission� Fusion� Strip mining� Jamming� Splitting� Collapsing

Back end: Finite resource issues and
code generation.
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Some thoughts

Misconceptions

Optimization optimizes your program.
There’s probably a better algorithm or sequence of

program transformations. While optimization hopefully

improves your program, the result is usually not optimal.

Optimization requires (much) more
compilation time. For example, dead code

elimination can reduce the size of program text such

that overall compile time is also reduced.

A clever programmer is a good sub-
stitute for an optimizing compiler.
While efficient coding of an algorithm is essential, pro-

grams should not be obfuscated by “tricks” that are

architecture- (and sometimes compiler-) specific.

All too often: : :

Optimization is disabled by default. De-

bugging optimized code can be treacherous [45, 23].

Optimization is often the primary suspect of program

misbehavior—sometimes deservedly so. “No, not the

third switch!”

Optimization is slow. Transformations are often

applied to too much of a program. Optimizations are

often textbook recipes, applied without proper thought.

Optimization produces incorrect code.
Although recent work is encouraging [42], optimizations

are usually developed ad hoc.

Programmers are trained by their com-
pilers. A style is inevitably developed that is con-

ducive to optimization.

Optimization is like sex:� Everybody claims to get good results using exotic techniques;� Nobody is willing to provide the details.
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Multilingual systems

IBM 
RS/6000

SUN
SPARC

C FTN ADA

CRAY. . .

. . .

CRAYIBM 
RS/6000

SUN
SPARC

C FTN ADA

IL

. . .

. . .

Architecting an intermediate language reduces the incremental cost of accom-
modating new source languages or target architectures [5]. Moreover, many
optimizations can be performed directly on the intermediate language text, so that
source- and machine-independent optimizations can be performed by a common
middle-end.
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Intermediate languages

It’s very easy to devote much time and effort toward choosing the “right” IL. Below
are some guidelines for choosing or developing a useful intermediate language:� The IL should be a bona fide language, and not just an aggregation of data

structures.� The semantics of the IL should be cleanly defined and readily apparent.� The IL’s representation should not be overly verbose:

– Although some expansion is inevitable, the IL-to-source token ratio should be
as low as possible.

– It’s desirable for the IL to have a verbose, human-readable form.� The IL should be easily and cleanly extensible.� The IL should be sufficiently general to represent the important aspects of multiple
front-end languages.� The IL should be sufficiently general to support efficient code generation for
multiple back-end targets.

A sampling of difficult issues:� How should a string operation be
represented (intact or as a “loop”)?� How much detail of a procedure’s
behavior is relevant?

Ideally, an IL has fractal characteristics:
optimization can proceed at a given
level; the IL can be “lowered”; opti-
mization is then applied to the freshly
exposed description.
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What happens in the middle end?

Essentially, the program is transformed
into an observably equivalent while less
resource-consumptive program. Such
transformation is often based on:� Assertions provided by the program

author or benefactor.� The program dependence
graph [29, 15, 6].� Static single assignment (SSA)
form [8, 3, 44, 9].� Static information gathered by solv-
ing data flow problems [25, 34, 35,
36, 22, 37, 38, 27].� Run-time information collected by
profiling [40].

Control Flow Graph

Depth-First
Numbering

Spanning Tree

Dominators

Dominance
Frontiers

Intervals

Profiling

Program
Semantics

Sparse Evaluation
Graph

Data Flow
Problems

Graph
Program Dependence

Edges
Dependence

Control

Program

Transformation

Form
Assignment
Static Single

Data Dependence

Edges

Let’s take a look at an example that benefits greatly from optimization: : :
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Unoptimized matrix multiply

for i = 1 to N do

for j = 1 to N doA[i; j] 0

for k = 1 to N doA[i; j] A[i; j] +B[i; k]� C[k; j]
od

od

od

Note that A[i; j] is reallyAddr(A) + ((i� 1)� K1 + (j � 1)) �K2

which takes 6 integer operations.

The innermost loop of this “textbook” program takes

24 integer ops

3 loads

1 floating add

1 floating mpy

1 store

30 instructions
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Optimizing matrix multiply

for i = 1 to N do

for j = 1 to N doa &(A[i; j])
for k = 1 to N do?a ? a +B[i; k]� C[k; j]
od

od

od

for i = 1 to N dob &(B[i; 1])
for j = 1 to N doa &(A[i; j])

for k = 1 to N do?a ? a + ?b� C[k; j]b b+KB
od

od

od

The expression A[i; j] is loop-invariant

with respect to the k loop. Thus, code
motion can move the address arith-
metic forA[i; j]out of the innermost loop.

The resulting innermost loop contains
only 12 integer operations.

As loop k iterates, addressing arithmetic
for B changes from B[i; k] to B[i; k + 1].
Induction variable analysis detects the
constant difference between these ex-
pressions.

The resulting innermost loop contains
only 7 integer operations.

Similar analysis for C yields only 2 integer operations in the innermost loop, for a
speedup of nearly 5. We can do better, especially for large arrays.
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If optimization is: : :

so great because:

A good compiler can sell (even a slow)
machine. Optimizing compilers easily provide a

factor of two in performance. Moreover, the analysis

performed during program optimization can be incor-

porated into the “programmingenvironment” [29, 7, 43].

New languages and architectures mo-
tivate new programoptimizations. Al-

though someoptimizations are almost universally benefi-

cial, the advent of functional and parallel programming

languages has increased the intensity of research into

program analysis and transformation.

Programs can be written with attention
to clarity, rather than performance.
There is no substitute for a good algorithm. However, the

expression of an algorithm should be as independent as

possible of any specific architecture.

then:

Why does it take so long? Compilation

time is usually 2–5 times slower, and programs with large

procedures often take longer. Often this is the result of

poor engineering: better data structures or algorithms

can help in the optimizer.

Why does the resulting program some-
times exhibit unexpected behavior?
Sometimes the source program is at fault, and a bug

is uncovered when the optimized code is executed;

sometimes the optimizing compiler is itself to blame.

Why is “no-opt” the default? Most com-

pilations occur during the software development cy-

cle. Unfortunately, most debuggers cannot provide

useful information when the program has been opti-

mized [45, 23]. Even more unfortunately, optimizing

compilers sometimes produce incorrect code. Often,

insufficient time is spent testing the optimizer, and with

no-opt the default, bugs in the optimizer may remain

hidden.

Copyright c
1994 Ron K. Cytron. All rights reserved – 128– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



Ingredients in a data flow framework

Data flow graphGdf = (Ndf ; Edf)
which is based on a directed flow

graph Gf = (Nf ; Ef), typically the
control flow graph of a procedure.

A data flow problem is

forward if the solution at a nodemay
depend only on the program’s
past behavior;

backward if the solution at a node
maydependonly on a program’s
future behavior;

bidirectional if both past and future
behavior is relevant [12, 13, 14].

Start

Stop

A

B

C D

E F

G

H

J

K

L

M� We’ll assume the data flow graph is augmented with a Start and Stop node, and
an edge from Start to Stop.� We’ll limit our discussion to non-bidirectional problems, and assume that edges

in the data flow graph are oriented in the direction of the data flow problem.
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Ingredients in a data flow framework (cont’d)

Meet lattice which determines the out-
come when disparate solutions
combine. The lattice is specified
with distinguished elements> which represents the best possible

solution, and? which represents the worst possi-
ble solution.

Transfer Functions which transform one
solution into another.

Soln3

Soln2Soln1

OUT = f (IN)

Soln IN

Soln OUT

We’ll use the meet lattice to summarize the effects of convergent paths in the data

flow graph, and transfer functions to model the effects of a data flow graph path on

the data flow solution.

We’ll begin with some simple bit-vectoring data flow problems, classically solved as
operations on bit-vectors. For ease of exposition, we’ll associate data flow solutions
with the edges, rather than the nodes, of the data flow graph.
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Available expressions

Anexpression expr isavailable (Avail) at
flow graph edge e if any past behavior
of the program includes a computation
of the value of expr at e.
Consider the expression (v + w) in the
flow graph shown to the right. If the ex-
pression is available at the assignment
to z, then it need not be recomputed.� This is a forward problem, so the data

flowgraphwill have the same edges
and Start and Stop nodes as the flow
graph.� The solution for any given expr is
either Avail or Avail.� The “best” solution for an expression
isAvail. We thus obtain the two-level
lattice:> is Avail.? is Avail.

Start

Stop

v = 9

x = v+w

v = 2

y = v+w

w = 5

z = v+w
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Available expressions(cont’d)

Nodes that compute an expression
make that expression available. We
also assume that every expression is
available from Start.
The transfer function for each high-
lighted node makes the expression (v +w) Avail, regardless of the solution
present at the node’s input.

Stop

v = 9

v = 2

Avail

Avail

Avail

Avail

Avail

w = 5

z = v+w

x = v+w

y = v+w

Start
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Available expressions(cont’d)

Nodes that assign to any variable in
an expression make that expression not
available, even if the variable’s value is
unchanged.

The transfer function for each high-
lighted node makes the expression (v +w) Avail, regardless of the solution
present at the node’s input.

Start

Stop

v = 9

x = v+w

v = 2

y = v+w

Not Avail Not Avail

Not Avail

w = 5

z = v+w

Not AvailNot Avail
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Available expressions (cont’d)

Herewe see the global solution for avail-
ability of the expression (v + w).
Each of the highlighted nodes shown
previously asserts a solution on its output
edge(s). It’s the job of global data
flow analysis to assign the best possible
solution to every edge in the data flow
graph, consistent with the asserted solu-
tions.

The expression (v + w) need not be
computed in the assignment to z. The
relevant value is held either in x, or y,
depending on program flow.

To solve this problem using bit-vectors,
assign each expression a position in the
bit-vector. When an expression is avail-
able, its associated bit is 1.

Start

Stop

v = 8

v = 9

x = v+w

v = 2

Avail

Avail

Avail

y = v+w

Avail

Avail

Avail

Avail

Avail

Not Avail Not Avail

Not Avail

Not Avail

Not Avail
Avail

Not Avail

Not Avail

Avail

w = 5

z = v+w
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Live variables

A variable v is live at edge e if the future
behavior of the programmay reference
the value of v at e.
If a variable v is not live, then any
resources associated with v (registers,
storage, etc.) may be reclaimed.� This is a backward problem.� In the bit-vector representation,

each variable is associated with a
bit.� The “best” solution is Live, so we
obtain the two-level lattice:> is Live.? is Live.

A

B

C D

v = 1 v = 2

x = v

v = 3Stop

Start

E F

G

H

K

L

M

J
call f(v)
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Live variables (cont’d)

Each of the highlighted nodes affects
the data flow solution:� If a node uses v, then the node’s

asserts that v is Live.� If a node kills v, then the node’s
output asserts that v is Live.

Start

Stop

v = 1 v = 2

call f(v)

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

v = 3

x = v
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Live variables (cont’d)

If a node Y preserves v (as might a
procedure call), then the node does not
affect the solution.� If v is Live on “input” to Y , then Y

cannot make v Live.� If v is Live on “input” to Y , then Y
does not make v Live.

Node Y ’s transfer function is therefore
the identity function:fY (IN ) = IN
assuming node Y does not use v.

Global solution: Live variables

Start

Stop

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

Live

Live

Live

LiveLive Live

Not Live Live

Live
Live

Live

Live

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M
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Formal specification of a data flow framework

The data flow graphGdf = (Ndf ; Edf)
has been described previously:� its edges are oriented in the direc-

tion of the data flow problem;� Gdf is augmented with nodes Start
and Stop and an edge (Start; Stop),
suitably inserted with respect to the
direction of the data flow problem.

Successors and predecessors are also
defined with respect to the direction of
the data flow problem:Succs(Y ) = fZ j (Y; Z) 2 Edf gPreds(Y ) = fX j (X;Y ) 2 Edf g

The meet semilattice isL = (A;>;?;�;^)A is a set (usually a powerset), whose
elements form the domain of the
data flow problem,> and ? are distinguished elements ofA, usually called “top” and “bot-
tom”, respectively,� is a reflexive partial order, and^ is the associative and commutative
meet operator, such that for anya; b 2 A, a � b () a ^ b = aa ^ a = aa ^ b � aa ^ b � ba ^ > = aa ^ ? = ?

These rules allow formal reasoning
about > and ? in a framework.
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Formal specification (cont’d)

The set F of transfer functionsF � ff : L 7! Lg
has elements for describing the behav-
ior of any flow graph node with respect
to the data flow problem.

To obtain a stable solution, we’ll require
the functions in F to be monotone:(8f 2 F)(8x; y 2 L)x � y ! f (x) � f (y)
In other words, a node cannot produce
a “better” solution when given “worse”
input. Given a two-level lattice, evalua-
tion of the data flow graph shown to the
right oscillates between solutions and
never reaches a fixed point.

Start

Y

StopfY (IN ) = 8><>: > if IN = ?? if IN = >
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Big picture

SSA form De-SSA

Program Control Flow Analysis

Sparse Evaluation Graph Evaluation

Constant Propagation

Value Numbering

Code Motion

New Paper

LowerDF1 DF2 ...

We’ll now examine some special algorithms for optimization, based on a single
assignment representation.
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Static Single Assignment (SSA) form

Below are shown a program and its reaching definitions.

Start

Stop

2

1

3

call f(v )4

= v

= v

G

H

v  = 

v  = 

v  = 

4call f(v )

Start

Stop

1

2

{  }

{  }

{  }

{v1}

{v1}

{v1}

{v2}

{v1.v2}

{v3}

{v3}

{v3}

{v3, v4}
{v3, v4} {v3, v4}

{v3, v4}

{v3, v4} {v3, v4}

{v1. v2. v3. v4}

{v3. v4}

= v

= v

G

H

3

v  = 

v  = 

v  = 

Notice how the use of vat G is reached by two definitions, and the use at H is reached
by four definitions. If each use were reached by just a single definition, data flow
analysis based on definitions could consult one definition per use.
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SSA form (cont’d)

Here we see the SSA form of the pro-
gram.� Each definition of v is with respect to

a distinct symbol: v1 is as different
from v2 as x would be from y.� Where multiple definitions reach a
node, a �-function is inserted, with
arguments sufficient to receive a dif-
ferent “name” for v on each in-edge.� Each use is appropriately renamed
to the distinct definition that reaches
it.� Although �-functions could have
been placed at every node, the
program shown has exactly the
right number and placement of �-
functions to combine multiple defs
from the original program.� Our example assumes that proce-
dure f does not modify v.

/v = O(v ,v )

/v = O(v ,v )
H

= v
5 4 6

5

/v = O(v ,v )

Start

Stop

2

1v = 1

3v = 3

call f(v )

G

4 1 2
= v4

6 0

3

3

v = 1
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SSA form (cont’d)

Eachdef is now regardedas a “killing” def, even those usually regardedas preserving
defs. For example, if v is potentially modified by the call site, then the old value forv must be passed into the called procedure, so that its value can be assigned to the
name for v that always emerges from the procedure.

Procedure foo(v)
if (c) thenv  7

else

/? Do nothing ?/
fi

end

Procedure foo(vout; vin)v0 vin
if (c) thenv1 7

else

/? Do nothing ?/
fiv2 �(v0; v1)vout v2

end

SSA form can be computed by a data flow framework, in which the transfer function
for a node with multiple reaching defs of v generates its own def of v. Uses are then
named by the solution in effect at the associated node.
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SSA form construction [9]

1. Every preserving def is turned into a killing def, by copying potentially unmodified
values (at subscripted defs, call sites, aliased defs, etc.).

2. Each ordinary definition of v defines a new name.

3. At each node in the flow graph where multiple definitions of v meet, a �-function
is introduced to represent yet another new name for v.

4. Uses are renamed by their dominating definition (where uses at a �-function are
regarded as belonging to the appropriate predecessor node of the �-function).
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Why is SSA good?

Data flow algorithms built on def-use chains gain asymptotic efficiency as shown
below:

v = v = v =

= v = v = v

Quadratic def-use chains

v = v = v =

= v = v = v

v = O(v,v,v)/

Linear def-use chains

With each use reached by a unique def, program transformations such as code
motion are simplified: motion of a use depends primarily on motion of its unique
reaching def. Intuitively, the program has been transformed to represent directly
the flow of values. We’ll now look at some optimizations that are simplified by SSA
form.
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SSA constant propagator [44]

Original Programi 6j  1k  1

repeat

if

�i = 6

�
thenk  0

elsei i+ 1

fii i + kj  j + 1

until (i = j)

SSA formi1 6j1 1k1  1

repeati2 �(i1; i5)j2 �(j1; j3)k2  �(k1; k4)
if

�i2 = 6

�
thenk3 0

elsei3 i2 + 1

fii4 �(i2; i3)k4  �(k3; k2)i5 i4 + k4j3 j2 + 1

until (i5 = j3)
Each name is initialized to the lattice value >. Propagation proceeds only along
edges marked executable. Such marking takes place when the associated condi-
tion reaches a non-> value. The value > propagates along unexecutable edges.
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SSA constant propagator (cont’d)

SSA Formi1 6j1 1k1  1

repeati2 �(i1; i5)j2 �(j1; j3)k2  �(k1; k4)
if

�i2 = 6

�
thenk3 0

elsei3 i2 + 1

fii4 �(i2; i3)k4  �(k3; k2)i5 i4 + k4j3 j2 + 1

until (i5 = j3)

Pass 1i1 6j1 1k1  1

repeati2 �(i1; i5) = (6 ^>) = 6j2 �(j1; j3) = (1 ^ >) = 1k2  �(k1; k4) = (1 ^>) = 1

if

�i2 = 6

�
thenk3 0

else

/? Not executed ?/
fii4 �(i2; i3)) (6 ^ >) = 6k4  �(k3; k2)) (0 ^>) = 0i5 i4 + k4) (6 + 0) = 6j3 j2 + 1) (1 + 1) = 2

until

�i5 = j3) (6 = 2) = false

�
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SSA constant propagator (cont’d)

Pass 1i1 6j1 1k1  1

repeati2 �(i1; i5) = (6 ^>) = 6j2 �(j1; j3) = (1 ^ >) = 1k2  �(k1; k4) = (1 ^>) = 1

if

�i2 = 6

�
thenk3 0

else

/? Not executed ?/
fii4 �(i2; i3)) (6 ^ >) = 6k4  �(k3; k2)) (0 ^>) = 0i5 i4 + k4) (6 + 0) = 6j3 j2 + 1) (1 + 1) = 2

until

�i5 = j3) (6 = 2) = false

�
Pass 2i1 6j1 1k1  1

repeati2 �(i1; i5) = (6 ^ 6) = 6j2 �(j1; j3) = (1 ^ 2) = ?k2  �(k1; k4) = (1 ^>) = ?

if

�i2 = 6

�
thenk3 0

else

/? Not executed ?/
fii4 �(i2; i3)) (6 ^ >) = 6k4  �(k3; k2)) (0 ^>) = 0i5 i4 + k4) (6 + 0) = 6j3 j2 + 1) (? + 1) = ?

until

�i5 = j3) (6 = ?) = ?�
Our solution has stabilized. Even though k2 is ?, that value is never transmitted along
the unexecuted edge to the � for k4.
Copyright c
1994 Ron K. Cytron. All rights reserved – 148– SIGPLAN ’94 COMPILER CONSTRUCTION TUTORIAL



SSA value numbering [3, 39]a read()v  a + 2c aw  c + 2t a + 2x t� 1

For the above program, constant prop-
agation will fail to determine a compile-
time value for v and w, because the
behavior of the read() function must be
captured as ? at compile-time.

Nonetheless, we can see that v and w
will hold the same value, even though
we cannot determine at compile-time
exactly what that value will be. Such
knowledge helps us replace the com-
putation of (c+2) by a simple copy fromv.

Value numbering attempts to label each
computation of theprogramwith anum-
ber, such that identical computations
are identically labeled.� Prior to SSA form, value numbering

algorithms were applied only within
basic blocks (i.e., no branching) [2].� Early value numbering algorithms
relied on textual equivalence to de-
termine value equivalence. The
text of each expression (and per-
haps subexpression) was hashed to
a value number. Intervening defs
of variables contained in an expres-
sion would kill the expression. This
approach could not detect equiva-
lence of v and w in the example to
the left, since (a + 2) is not textually
equivalent to (c + 2).

It seems that x ought to have the same value as v and w, but our algorithm won’t
discover this, because the “function” that computes x (�n:n � 1) differs from the
“function” that computes v and w (�n:n+ 2).
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SSA value numbering (cont’d)� We essentially seek a partition of
SSA names by value equivalence,
since value equivalence is reflexive,
symmetric, and transitive.� We’ll initially assume that all SSA
names have the same value.� When evidence surfaces that a
given block may contain disparate
values (names), we’ll talk about split-
ting the block. Generally, the algo-
rithm will only split a block in two.
However, the first split ismore severe,
in that names are split by the func-
tional form of the expressions that
compute their value.

v

w x

a

c

t

w

a

t

v

x

c

Above are shown the initial and final partitions for the example on the previous page.
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SSA value numbering (cont’d)

After construction of SSA form, we split by the function name that computes values for
the assigned variables. We thus distinguish between binary addition, multiplication,
etc.

One further point is that �-functions at different nodes must also be distinguished,
even though their function form appears the same. This is necessary because a
branch taken into one �-function is not necessarily the same branch taken into
another, unless the two functions reside in the same node.

Binary Plus

Unary Minus

x * y + z

cos(x)

PHI at node Y

PHI at node Z
foo(x,y)bar(x,y)

X =     (X,X)φ

X =    (X,X)φ
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SSA value numbering example

if (condA) thena1 �
if (condB) thenb1 �
elsea2 �b2 �
fia3 �(a1; a2)b3 �(b1; b2)c2 ? a3d2  ? b3

elseb4 


fia5 �(a1; a0)b5 �(b0; b4)c3 ? a5d3  ? b5e3  ? a5

For brevity, symbols �, �, and 


represent syntactically distinct function
classes in the program shown to the left.

In the figures that follow, we’ll see thatc2 and d2 have the same value, while c3
and d3 do not. Thus, program optimiza-
tion will save a memory fetch by using
the value of c2 for d2.
Note that if b is declared volatile in
the language C, then this optimization
would be incorrect, because each ref-
erence to b should be realized. How
can one account for volatility in this
optimization? Perhaps by assuming that
volatile variables cannot have the same
value.

It would be difficult and expensive to
express all possible defs of a volatile
variable in SSA form.
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SSA value numbering example (cont’d)

Here we see the initial partition of SSA
names:� The syntactic classes �, �, and 
 are

distinguished;� �-functions at different nodes are
distinguished;� The initial value of each variable v0
is considered identical;� Within each syntactic class, values
are considered identical.

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5
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SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

On the left, the block with a5 splits the five names shown into two subblocks; on the
right, b4 splits a5 from b5.
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SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

Finally, b5 splits c3 from d3. Here, note
that we could have used either a5 or b5
to do the job. Asymptotic efficiency is
gained by choosing b5, because there
are fewer uses of that name than of a5.
In summary, the algorithm is as follows:

1. Let W be a worklist of blocks to be
used for further splitting.

2. Pick and remove (arbitrary) blockD

fromW .

3. For each blockC properly split byD,

(a) If C is on W , then remove C and
enqueue its splits by D;

(b) Otherwise, enqueue the split with
the fewest uses.

4. Loop to step 2 until W is empty.
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Register allocation� Optimal register allocation is NP-hard.� Trivial approaches can be really bad: using the most recently freed register is
provably worst for pipelined machines.� Many approaches begin by assuming an infinite number of virtual registers

for assignment to values. These are then covered by actual registers during
allocation.

Chaitin-Chandra

Each variable (or expression) is
assigned a virtual register for the dura-
tion of a procedure. Actual registers are
allocated by coloring an interference
graph, using Chandra’s heuristic. Where
allocation fails, some expressions care
chosen for spilling: these are not kept
in registers but loaded on demand and
immediately stored afterwards.

Chow-Hennessey

The maximum number of live variables
is computed. Some register allocation
can clearly succeed if there are suffi-
cient registers to cover max-live. How-
ever, this may involve allocating the
same variable to two different registers
in different live ranges. This necessitates
swapping registers for a given variable
where control flow merges.

Knobe and Zadeck give a method that sloshes rather than spills: variables are kept
intermittently in registers.
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Possible course and project coverage

I’ve found that if one tries to cover all the parsing methods in sequence, then the
projects tend to fall behind because the necessary lectures haven’t been given.
My solution is to alternate between the two kinds of lectures. I’ve tried to develop
examples that serve as glue. One such example is the grammar that structures left
and right values. While this is a good introduction to type checking, the grammar
also illustrates the limitations of SLR parsing.

I begin with a few warm up assignments

1. The Chinese menu problem (10
days).

2. A finite-state machine problem,
such as a reserved keyword or table
generator (12 days).

3. Prefix expression evaluation, by re-
cursive descent and a simple YACC

grammar (2 weeks).

And then start the sequence of assign-
ments that leads to a finished compiler.

1. Symbol tables, starting with the C
grammar (2 weeks).

2. Abstract syntax trees (10 days).

3. Semantic analysis: left and right val-
ues, type checking (10 days).

4. Preliminary codegeneration: simple
expressions (10 days).

5. Final code generation (2–3 weeks).
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Conclusions� Much of the work in crafting a compiler has been automated, by parser genera-
tors, tokenizing tools, attribute grammars, and automatic code generators.� Partly due to these tools, creating the runtime library now occupies a largeportion
of compiler construction time.� To understand and better appreciate the automatic tools, I believe in giving
students practice in creating some components “by hand”.� It’s important to get all the way through code generation in a one-semester
course.� I prefer to leave program optimization for a second course.� In a projects course of this nature, one is often loathe to assign (or grade)
homework. I have found the following strategy works well: a Give out a list of
6 problems that the students should be able to work. One week later, give one of
the six problems as a quiz, where the problem is determined by the roll of a die.aThanks to Ken Goldman and Sally Goldman for this idea.
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In summary

Sung to the tune:
“I am the very model

of a modern Major General”

We start with some descriptions of our languages fanatical
That specify the syntax and the attributes grammatical
Through Yacc and Lexx our BNF is processed quite dramatical
By front ends that we generate these parsers automatical.

They shift, reduce, and scrutinize our errors problematical
And sometimes honest programs get transformed into the radical
But what the heck we know our derivations are canonical

And you’ll admit our diagnostics are the most laconical.

And you’ll admit our diagnostics are the most laconical,
Yes you’ll admit our diagnostics are the most laconical,
Because we know our diagnostics are the most laconi conical.

Code motion, hoisting, commoning and all the transforms you’d expect
Your program’s faster even if the output isn’t quite correct.
But most of us believe our transformations are canonical
And you’ll admit our diagnostics are the most laconical.
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Some textbooks

Aho, Sethi, Ullman: Compilers: principles, techniques, and tools, Addison-Wesley,
1988 (affectionately called “The Dragon Book”). A long-time favorite in classes and as a reference

book. Good coverage of popular parsing methods, though Earley’s method is not presented. Good description of runtime

storage organization. No real connections are given to projects, and no tools are provided (but references to extant tools

are given). No real insight given on how to disambiguate a grammar.

Fischer and LeBlanc: Crafting a Compiler with C, Benjamin/Cummings, 1991. There are

actually two versions of this book, one with C and one based on ADA. This is an excellent textbook (my favorite), with excellent

coverage of parsing, semantic analysis, and code generation. The text meshes nicely with tools provided by the authors.

Mason and Brown: lex & yacc, O’Reilly & Associates, 1992. A good companion for the tools it

covers. I list this as an optional reference book.

Waite and Carter: An Introduction to Compiler Construction, HarperCollins, 1993. A

relatively new book, strong on code generation, but thin in parsing and semantic analysis. Biased toward the VAX instruction

set. A consistent well-integrated text. Very weak on grammars: the text uses syntax diagrams.

Waite and Goos: Compiler Construction, Springer-Verlag, 1984. A now-dated but good text,

fairly broad and not overly deep in any one area.

My favorite in teaching has been Fischer and LeBlanc. That book is currently
undergoing revision, which will merge the language-specific versions and include
much new material, for example on program optimization. I am joining them as a
coauthor in this revision.
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Reference books

Aho and Ullman: The Theory of Parsing, Translation, and Compiling (two volumes),
Prentice-Hall, 1973. Not really a textbook, but an excellent reference.

Bauer and Eickel: Compiler Construction: An Advanced Course, Springer-Verlag,
1976. Notes from a course taught in 1974. A good teaching reference, but not a textbook. The chapters are separately

authored.

Hopcroft and Ullman: Introduction to Automata Theory, Languages, and Computa-

tion, Addison-Wesley, 1979. A formal text on language recognition. A good reference for teaching.

Martin: Introduction to Languages and the Theory of Computation, McGraw–Hill,
1991. An excellent reference on automata theory. Terrific coverage of undecidability.

Wirth: Algorithms + Data Structures = Programs, Prentice-Hall, 1976. Really a book on other

topics, but includes great coverage of recursive-descent compilers for PASCAL. Also uses syntax diagrams.
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